TRABAJO PRÁCTICO Nº 6

ESPACIOS VECTORIALES CON PRODUCTO INTERIOR

Ejercicio 1: Pruebe que el producto escalar de vectores en IR^3 es un producto interior.

Ejercicio 2:Demuestre que el espacio vectorial $V = \mathcal{P}_2$ es un espacio con producto interior para el producto definido del siguiente modo: $\langle p(x), q(x) \rangle = \int_0^1 p(x) \cdot q(x)$.

Ejercicio 3:a) Completar la siguiente tabla siendo:

$$u = \begin{bmatrix} 1 \\ 1 \end{bmatrix} y v = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

	Producto escalar en IR ²	$\langle u, v \rangle = u_1 v_1 + 4.u_2 v_2$
$\ u\ $		
$\ v\ $		
d(u,v)		
Ang(u,v)		

b) Verificar los resultados de la tabla gráficamente. Nota: Para el producto interior ponderado usar una escala adecuada.

Ejercicio 4:Demuestre las siguientes propiedades de un E.V. con producto interior:

- a)Para todo vector v de V y 0 el vector nulo $\langle v, 0 \rangle = \langle 0, v \rangle = 0$ (0 escalar)
- b) Para todo vector v y u de V d(u, v) = d(v, u)
- c) Para todo vector v de V, k de R, $||kv|| = |k| \cdot ||v||$.

Ejercicio 5:En V = M_{2x2} , y considerando producto interior euclideano en base canónica encuentre.

- a) Una matriz B ortogonal a la matriz $A = \begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix}$.
- b) Una matriz C de norma 1 y Ang(A,C) nulo.
 - c) El valor de k tal que ||kA|| = 2
 - d) Las respuestas para los incisos anteriores, son únicas?

Ejercicio 6:Encuentre el subespacio de IR^3 que describa a todos los vectores ortogonales al plano x-3y+2z=0, considerando el producto interior euclideano. Verifique que estos son los puntos de una recta que pasa por el origen.

Ejercicio 7:Determine los ángulos interiores de un triángulo cuyos lados miden respectivamente a=1, b=1 y $c=\sqrt{3}$.

Ejercicio 8: Suponga que u, v y w son son vectores de un espacio con producto interno tales que $\langle u, v \rangle = 1$; ||u|| = 1; $||v|| = \sqrt{3}$.

- a) Calcule d(u, v)
- b) Dé un ejemplo de IR⁴ que verifique esta situación.

Ejercicio 9: Verifiquela desigualdad de Schwarz y la propiedad triangular entre los vectores (-2,2) y (2,1)

- a)con el producto interior euclideano definido en IR^2
- b) con el producto interior definido por $\langle u, v \rangle = 4 u_1 \cdot v_1 + u_2 \cdot v_2$

Ejercicio 10:Pruebe que los siguientes conjuntos son ortonormales en los espacios indicados y con el producto interior definidos en cada uno de ellos.

a)
$$\left\{ \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}} \right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right) \right\}$$
 en IR^3 .

b)
$$\left\{\frac{1}{3}x^2 - \frac{2}{3}x + \frac{2}{3}, -\frac{2}{3}x^2 + \frac{1}{3}x + \frac{2}{3}, \frac{2}{3}x^2 + \frac{2}{3}x + \frac{1}{3}\right\}$$
 en \mathcal{S}_2 .

Ejercicio 11: Dados los vectores $u = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ y $v = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$, complete con un tercer vector para obtener una base ortonormal de IR^3 .

Ejercicio 12: Determine si las siguientes proposiciones son falsas o verdaderas y justifique la respuesta.

- a) Sea $A = \{(-1,1,0), (0,0,-1)\}$ es un conjunto ortogonal de IR^3 .
- b) Sea $A = \{(1,1,0), (0,0,-1)\}$ es una base ortonormal de IR^3 .
- c) Sea IR^3 con producto interior euclideano, para $k = \frac{1}{2}$, los vectores u = (2, 1, 3) y v = (1, 7, k) son ortogonales.
- d) El vector $v = \left(\frac{4}{5}, \frac{3}{5}\right)$ es un versor o vector unitario.
- e) La función $\langle u, v \rangle = u_1 \cdot v_1 u_2 \cdot v_2$, define un producto interior en IR^2 .