
Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Tutorial Emu86

1) Numbering systems tutorial

What is it?

There are many ways to represent the same numeric value. Long

ago, humans used sticks to count, and later learned how to draw

pictures of sticks in the ground and eventually on paper. So, the
number 5 was first represented as: | | | | | (for five

sticks).

Later on, the Romans began using different symbols for multiple
numbers of sticks: | | | still meant three sticks, but a V now

meant five sticks, and an X was used to represent ten of them!

Using sticks to count was a great idea for its time. And using symbols
instead of real sticks was much better.

Decimal System

Most people today use decimal representation to count. In the
decimal system there are 10 digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

These digits can represent any value, for example:

754.

The value is formed by the sum of each digit, multiplied by the base
(in this case it is 10 because there are 10 digits in decimal system) in

power of digit position (counting from zero):

Position of each digit is very important! for example if you place "7"

to the end:
547

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

it will be another value:

Important note: any number in power of zero is 1, even zero in

power of zero is 1:

Binary System

Computers are not as smart as humans are (or not yet), it's easy to

make an electronic machine with two states: on and off, or 1 and 0.
Computers use binary system, binary system uses 2 digits:

0, 1

And thus the base is 2.

Each digit in a binary number is called a BIT, 4 bits form a NIBBLE,

8 bits form a BYTE, two bytes form a WORD, two words form a
DOUBLE WORD (rarely used):

There is a convention to add "b" in the end of a binary number, this

way we can determine that 101b is a binary number with decimal
value of 5.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

The binary number 10100101b equals to decimal value of 165:

Hexadecimal System

Hexadecimal System uses 16 digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

And thus the base is 16.

Hexadecimal numbers are compact and easy to read.

It is very easy to convert numbers from binary system to
hexadecimal system and vice-versa, every nibble (4 bits) can be

converted to a hexadecimal digit using this table:

Decimal

(base 10)

Binary

(base 2)

Hexadecimal

(base 16)

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

There is a convention to add "h" in the end of a hexadecimal

number, this way we can determine that 5Fh is a hexadecimal

number with decimal value of 95.
We also add "0" (zero) in the beginning of hexadecimal numbers that

begin with a letter (A..F), for example 0E120h.

The hexadecimal number 1234h is equal to decimal value of 4660:

Converting from Decimal System to Any

Other

In order to convert from decimal system, to any other system, it is

required to divide the decimal value by the base of the desired

system, each time you should remember the result and keep the
remainder, the divide process continues until the result is zero.

The remainders are then used to represent a value in that system.

Let's convert the value of 39 (base 10) to Hexadecimal System (base

16):

As you see we got this hexadecimal number: 27h.
All remainders were below 10 in the above example, so we do not

use any letters.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Here is another more complex example:
let's convert decimal number 43868 to hexadecimal form:

The result is 0AB5Ch, we are using the above table to convert
remainders over 9 to corresponding letters.

Using the same principle we can convert to binary form (using 2 as

the divider), or convert to hexadecimal number, and then convert it
to binary number using the above table:

As you see we got this binary number: 1010101101011100b

Signed Numbers

There is no way to say for sure whether the hexadecimal byte 0FFh

is positive or negative, it can represent both decimal value "255" and
"- 1".

8 bits can be used to create 256 combinations (including zero), so we

simply presume that first 128 combinations (0..127) will represent
positive numbers and next 128 combinations (128..256) will

represent negative numbers.

http://www.emu8086.com/assembler_tutorial/numbering_systems_tutorial.html#hextable
http://www.emu8086.com/assembler_tutorial/numbering_systems_tutorial.html#hextable

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

In order to get "- 5", we should subtract 5 from the number of
combinations (256), so it we'll get: 256 - 5 = 251.

Using this complex way to represent negative numbers has some
meaning, in math when you add "- 5" to "5" you should get zero.

This is what happens when processor adds two bytes 5 and 251, the
result gets over 255, because of the overflow processor gets zero!

When combinations 128..256 are used the high bit is always 1, so

this maybe used to determine the sign of a number.

The same principle is used for words (16 bit values), 16 bits create

65536 combinations, first 32768 combinations (0..32767) are used
to represent positive numbers, and next 32768 combinations

(32767..65535) represent negative numbers.

There are some handy tools in emu8086 to convert numbers, and

make calculations of any numerical expressions, all you need is a
click on Math menu:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Base converter allows you to convert numbers from any system and
to any system. Just type a value in any text-box, and the value will

be automatically converted to all other systems. You can work both
with 8 bit and 16 bit values.

Multi base calculator can be used to make calculations between

numbers in different systems and convert numbers from one system
to another. Type an expression and press enter, result will appear in

chosen numbering system. You can work with values up to 32 bits.

When Signed is checked evaluator assumes that all values (except
decimal and double words) should be treated as signed. Double

words are always treated as signed values, so 0FFFFFFFFh is
converted to -1.
For example you want to calculate: 0FFFFh * 10h + 0FFFFh (maximum

memory location that can be accessed by 8086 CPU). If you check
Signed and Word you will get -17 (because it is evaluated as (-1) * 16

+ (-1) . To make calculation with unsigned values uncheck Signed so

that the evaluation will be 65535 * 16 + 65535 and you should get

1114095.

You can also use the base converter to convert non-decimal digits

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

to signed decimal values, and do the calculation with decimal values

(if it's easier for you).

These operation are supported:

~ not (inverts all bits).

* multiply.

/ divide.

% modulus.

+ sum.

- subtract (and unary -).

<< shift left.

>> shift right.

& bitwise AND.

^ bitwise XOR.

| bitwise OR.

Binary numbers must have "b" suffix, example:
00011011b

Hexadecimal numbers must have "h" suffix, and start with a zero

when first digit is a letter (A..F), example:
0ABCDh

Octal (base 8) numbers must have "o" suffix, example:
77o

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

2) 8086 assembler tutorial for beginners

(part 1)

this tutorial is intended for those who are not familiar with assembler
at all, or have a very distant idea about it. of course if you have

knowledge of some other programming language (basic, c/c++,
pascal...) that may help you a lot.

but even if you are familiar with assembler, it is still a good idea to
look through this document in order to study emu8086 syntax.

it is assumed that you have some knowledge about number

representation (hex/bin), if not it is highly recommended to study
numbering systems tutorial before you proceed.

what is assembly language?

assembly language is a low level programming language. you need to
get some knowledge about computer structure in order to understand

anything. the simple computer model as i see it:

the system bus (shown in yellow) connects the various components
of a computer.

the CPU is the heart of the computer, most of computations occur
inside the CPU.

RAM is a place to where the programs are loaded in order to be
executed.

http://www.emu8086.com/assembler_tutorial/numbering_systems_tutorial.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

inside the cpu

general purpose registers

8086 CPU has 8 general purpose registers, each register has its own

name:

 AX - the accumulator register (divided into AH / AL).

 BX - the base address register (divided into BH / BL).
 CX - the count register (divided into CH / CL).

 DX - the data register (divided into DH / DL).
 SI - source index register.

 DI - destination index register.
 BP - base pointer.

 SP - stack pointer.

despite the name of a register, it's the programmer who determines
the usage for each general purpose register. the main purpose of a

register is to keep a number (variable). the size of the above
registers is 16 bit, it's something like: 0011000000111001b (in

binary form), or 12345 in decimal (human) form.

4 general purpose registers (AX, BX, CX, DX) are made of two
separate 8 bit registers, for example if AX= 0011000000111001b,

then AH=00110000b and AL=00111001b. therefore, when you
modify any of the 8 bit registers 16 bit register is also updated, and

vice-versa. the same is for other 3 registers, "H" is for high and "L" is
for low part.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

because registers are located inside the CPU, they are much faster

than memory. Accessing a memory location requires the use of a
system bus, so it takes much longer. Accessing data in a register

usually takes no time. therefore, you should try to keep variables in

the registers. register sets are very small and most registers have
special purposes which limit their use as variables, but they are still

an excellent place to store temporary data of calculations.

segment registers

 CS - points at the segment containing the current program.
 DS - generally points at segment where variables are defined.

 ES - extra segment register, it's up to a coder to define its
usage.

 SS - points at the segment containing the stack.

although it is possible to store any data in the segment registers, this

is never a good idea. the segment registers have a very special
purpose - pointing at accessible blocks of memory.

segment registers work together with general purpose register to

access any memory value. For example if we would like to access
memory at the physical address 12345h (hexadecimal), we should

set the DS = 1230h and SI = 0045h. This is good, since this way
we can access much more memory than with a single register that is

limited to 16 bit values.

CPU makes a calculation of physical address by multiplying the
segment register by 10h and adding general purpose register to it

(1230h * 10h + 45h = 12345h):

the address formed with 2 registers is called an effective address.
by default BX, SI and DI registers work with DS segment register;

BP and SP work with SS segment register.
other general purpose registers cannot form an effective address!

also, although BX can form an effective address, BH and BL cannot.

special purpose registers

 IP - the instruction pointer.
 flags register - determines the current state of the

microprocessor.

IP register always works together with CS segment register and it

points to currently executing instruction.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

flags register is modified automatically by CPU after mathematical

operations, this allows to determine the type of the result, and to

determine conditions to transfer control to other parts of the

program.

generally you cannot access these registers directly, the way you can

access AX and other general registers, but it is possible to change

values of system registers using some tricks that you will learn a little

bit later.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

3) 8086 assembler tutorial for beginners

(part 2)

Memory Access

to access memory we can use these four registers: BX, SI, DI, BP.

combining these registers inside [] symbols, we can get different
memory locations. these combinations are supported (addressing

modes):

[BX + SI]

[BX + DI]

[BP + SI]

[BP + DI]

[SI]

[DI]

d16 (variable offset only)

[BX]

[BX + SI + d8]

[BX + DI + d8]

[BP + SI + d8]

[BP + DI + d8]

[SI + d8]

[DI + d8]

[BP + d8]

[BX + d8]

[BX + SI + d16]

[BX + DI + d16]

[BP + SI + d16]

[BP + DI + d16]

[SI + d16]

[DI + d16]

[BP + d16]

[BX + d16]

d8 - stays for 8 bit signed immediate displacement (for example: 22,

55h, -1, etc...)

d16 - stays for 16 bit signed immediate displacement (for example:
300, 5517h, -259, etc...).

displacement can be a immediate value or offset of a variable, or

even both. if there are several values, assembler evaluates all values

and calculates a single immediate value..

displacement can be inside or outside of the [] symbols, assembler
generates the same machine code for both ways.

displacement is a signed value, so it can be both positive or

negative.

generally the compiler takes care about difference between d8 and
d16, and generates the required machine code.

for example, let's assume that DS = 100, BX = 30, SI = 70.
The following addressing mode: [BX + SI] + 25

is calculated by processor to this physical address: 100 * 16 + 30 +

70 + 25 = 1725.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

by default DS segment register is used for all modes except those

with BP register, for these SS segment register is used.

there is an easy way to remember all those possible combinations

using this chart:

you can form all valid combinations by taking only one item from
each column or skipping the column by not taking anything from it.

as you see BX and BP never go together. SI and DI also don't go
together. here are an examples of a valid addressing modes:

[BX+5] , [BX+SI] , [DI+BX-4]

the value in segment register (CS, DS, SS, ES) is called a segment,

and the value in purpose register (BX, SI, DI, BP) is called an offset.
When DS contains value 1234h and SI contains the value 7890h it

can be also recorded as 1234:7890. The physical address will be

1234h * 10h + 7890h = 19BD0h.

if zero is added to a decimal number it is multiplied by 10, however
10h = 16, so if zero is added to a hexadecimal value, it is multiplied

by 16, for example:

7h = 7
70h = 112

in order to say the compiler about data type,
these prefixes should be used:

byte ptr - for byte.
word ptr - for word (two bytes).

for example:
byte ptr [BX] ; byte access.

 or

word ptr [BX] ; word access.

assembler supports shorter prefixes as well:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

b. - for byte ptr

w. - for word ptr

in certain cases the assembler can calculate the data type

automatically.

MOV instruction

 copies the second operand (source) to the first operand
(destination).

 the source operand can be an immediate value, general-
purpose register or memory location.

 the destination register can be a general-purpose register, or
memory location.

 both operands must be the same size, which can be a byte or a
word.

these types of operands are supported:

MOV REG, memory

MOV memory, REG

MOV REG, REG

MOV memory, immediate

MOV REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

for segment registers only these types of MOV are supported:

MOV SREG, memory

MOV memory, SREG

MOV REG, SREG

MOV SREG, REG

SREG: DS, ES, SS, and only as second operand: CS.

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

The MOV instruction cannot be used to set the value of the CS and
IP registers.

here is a short program that demonstrates the use of MOV instruction:

ORG 100h ; this directive required for a simple 1 segment .com program.

MOV AX, 0B800h ; set AX to hexadecimal value of B800h.

MOV DS, AX ; copy value of AX to DS.

MOV CL, 'A' ; set CL to ASCII code of 'A', it is 41h.

MOV CH, 1101_1111b ; set CH to binary value.

MOV BX, 15Eh ; set BX to 15Eh.

MOV [BX], CX ; copy contents of CX to memory at B800:015E

RET ; returns to operating system.

you can copy & paste the above program to emu8086 code editor,
and press [Compile and Emulate] button (or press F5 key on your

keyboard).

the emulator window should open with this program loaded, click
[Single Step] button and watch the register values.

how to do copy & paste:

1. select the above text using mouse, click before the text and

drag it down until everything is selected.

2. press Ctrl + C combination to copy.

3. go to emu8086 source editor and press Ctrl + V combination to
paste.

as you may guess, ";" is used for comments, anything after ";"

symbol is ignored by compiler.

you should see something like that when program finishes:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

actually the above program writes directly to video memory, so you

may see that MOV is a very powerful instruction

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

4) 8086 assembler tutorial for beginners
(part 3)

Variables

Variable is a memory location. For a programmer it is much easier to

have some value be kept in a variable named "var1" then at the

address 5A73:235B, especially when you have 10 or more variables.

Our compiler supports two types of variables: BYTE and WORD.

Syntax for a variable declaration:

name DB value

name DW value

DB - stays for Define Byte.

DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with a letter.

It's possible to declare unnamed variables by not specifying the name (this variable

will have an address but no name).

value - can be any numeric value in any supported numbering system

(hexadecimal, binary, or decimal), or "?" symbol for variables that are not

initialized.

As you probably know from part 2 of this tutorial, MOV instruction is
used to copy values from source to destination.

Let's see another example with MOV instruction:

ORG 100h

MOV AL, var1

MOV BX, var2

RET ; stops the program.

VAR1 DB 7

var2 DW 1234h

Copy the above code to emu8086 source editor, and press F5 key to

compile and load it in the emulator. You should get something like:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

As you see this looks a lot like our example, except that variables are

replaced with actual memory locations. When compiler makes
machine code, it automatically replaces all variable names with their

offsets. By default segment is loaded in DS register (when COM files
is loaded the value of DS register is set to the same value as CS

register - code segment).

In memory list first row is an offset, second row is a hexadecimal
value, third row is decimal value, and last row is an ASCII

character value.

Compiler is not case sensitive, so "VAR1" and "var1" refer to the

same variable.

The offset of VAR1 is 0108h, and full address is 0B56:0108.

The offset of var2 is 0109h, and full address is 0B56:0109, this
variable is a WORD so it occupies 2 BYTES. It is assumed that low

byte is stored at lower address, so 34h is located before 12h.

You can see that there are some other instructions after the RET
instruction, this happens because disassembler has no idea about

where the data starts, it just processes the values in memory and it
understands them as valid 8086 instructions (we will learn them

later).

You can even write the same program using DB directive only:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

ORG 100h ; just a directive to make a simple

.com file (expands into no code).

DB 0A0h

DB 08h

DB 01h

DB 8Bh

DB 1Eh

DB 09h

DB 01h

DB 0C3h

DB 7

DB 34h

DB 12h

Copy the above code to emu8086 source editor, and press F5 key to
compile and load it in the emulator. You should get the same

disassembled code, and the same functionality!

As you may guess, the compiler just converts the program source to
the set of bytes, this set is called machine code, processor

understands the machine code and executes it.

ORG 100h is a compiler directive (it tells compiler how to handle the
source code). This directive is very important when you work with

variables. It tells compiler that the executable file will be loaded at
the offset of 100h (256 bytes), so compiler should calculate the

correct address for all variables when it replaces the variable names

with their offsets. Directives are never converted to any real
machine code.

Why executable file is loaded at offset of 100h? Operating system
keeps some data about the program in the first 256 bytes of the CS

(code segment), such as command line parameters and etc.
Though this is true for COM files only, EXE files are loaded at offset

of 0000, and generally use special segment for variables. Maybe we'll
talk more about EXE files later.

Arrays

Arrays can be seen as chains of variables. A text string is an example
of a byte array, each character is presented as an ASCII code value

(0..255).

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Here are some array definition examples:

a DB 48h, 65h, 6Ch, 6Ch, 6Fh, 00h

b DB 'Hello', 0

b is an exact copy of the a array, when compiler sees a string inside

quotes it automatically converts it to set of bytes. This chart shows a
part of the memory where these arrays are declared:

You can access the value of any element in array using square
brackets, for example:
MOV AL, a[3]

You can also use any of the memory index registers BX, SI, DI, BP,
for example:
MOV SI, 3

MOV AL, a[SI]

If you need to declare a large array you can use DUP operator.
The syntax for DUP:

number DUP (value(s))

number - number of duplicate to make (any constant value).

value - expression that DUP will duplicate.

for example:
c DB 5 DUP(9)

is an alternative way of declaring:
c DB 9, 9, 9, 9, 9

one more example:
d DB 5 DUP(1, 2)

is an alternative way of declaring:
d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

Of course, you can use DW instead of DB if it's required to keep
values larger then 255, or smaller then -128. DW cannot be used to

declare strings.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Getting the Address of a Variable

There is LEA (Load Effective Address) instruction and alternative
OFFSET operator. Both OFFSET and LEA can be used to get the

offset address of the variable.
LEA is more powerful because it also allows you to get the address of

an indexed variables. Getting the address of the variable can be very
useful in some situations, for example when you need to pass

parameters to a procedure.

Reminder:
In order to tell the compiler about data type,
these prefixes should be used:

BYTE PTR - for byte.
WORD PTR - for word (two bytes).

For example:

BYTE PTR [BX] ; byte access.

 or

WORD PTR [BX] ; word access.
emu8086 supports shorter prefixes as well:

b. - for BYTE PTR
w. - for WORD PTR

in certain cases the assembler can calculate the data type automatically.

Here is first example:

ORG 100h

MOV AL, VAR1 ; check value of

VAR1 by moving it to AL.

LEA BX, VAR1 ; get address of VAR1

in BX.

MOV BYTE PTR [BX], 44h ; modify the

contents of VAR1.

MOV AL, VAR1 ; check value of

VAR1 by moving it to AL.

RET

VAR1 DB 22h

END

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Here is another example, that uses OFFSET instead of LEA:

ORG 100h

MOV AL, VAR1 ; check value of

VAR1 by moving it to AL.

MOV BX, OFFSET VAR1 ; get address of

VAR1 in BX.

MOV BYTE PTR [BX], 44h ; modify the

contents of VAR1.

MOV AL, VAR1 ; check value of

VAR1 by moving it to AL.

RET

VAR1 DB 22h

END

Both examples have the same functionality.

These lines:
LEA BX, VAR1

MOV BX, OFFSET VAR1

are even compiled into the same machine code: MOV BX, num

num is a 16 bit value of the variable offset.

Please note that only these registers can be used inside square
brackets (as memory pointers): BX, SI, DI, BP!

(see previous part of the tutorial).

Constants

Constants are just like variables, but they exist only until your

program is compiled (assembled). After definition of a constant its
value cannot be changed. To define constants EQU directive is used:

name EQU < any expression >

For example:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

k EQU 5

MOV AX, k

The above example is functionally identical to code:

MOV AX, 5

You can view variables while your program executes by selecting
"Variables" from the "View" menu of emulator.

To view arrays you should click on a variable and set Elements

property to array size. In assembly language there are not strict data
types, so any variable can be presented as an array.

Variable can be viewed in any numbering system:

 HEX - hexadecimal (base 16).
 BIN - binary (base 2).
 OCT - octal (base 8).

 SIGNED - signed decimal (base 10).

 UNSIGNED - unsigned decimal (base 10).
 CHAR - ASCII char code (there are 256 symbols, some

symbols are invisible).

You can edit a variable's value when your program is running, simply

double click it, or select it and click Edit button.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

It is possible to enter numbers in any system, hexadecimal numbers

should have "h" suffix, binary "b" suffix, octal "o" suffix, decimal

numbers require no suffix. String can be entered this way:

'hello world', 0

(this string is zero terminated).

Arrays may be entered this way:

1, 2, 3, 4, 5

(the array can be array of bytes or words, it depends whether BYTE

or WORD is selected for edited variable).

Expressions are automatically converted, for example:

when this expression is entered:

5 + 2

it will be converted to 7 etc...

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

5) 8086 assembler tutorial for beginners

(part 4)

Interrupts

Interrupts can be seen as a number of functions. These functions

make the programming much easier, instead of writing a code to
print a character you can simply call the interrupt and it will do

everything for you. There are also interrupt functions that work with

disk drive and other hardware. We call such functions software
interrupts.

Interrupts are also triggered by different hardware, these are called

hardware interrupts. Currently we are interested in software
interrupts only.

To make a software interrupt there is an INT instruction, it has
very simple syntax:

INT value
Where value can be a number between 0 to 255 (or 0 to 0FFh),

generally we will use hexadecimal numbers.
You may think that there are only 256 functions, but that is not

correct. Each interrupt may have sub-functions.

To specify a sub-function AH register should be set before calling
interrupt.

Each interrupt may have up to 256 sub-functions (so we get 256 *
256 = 65536 functions). In general AH register is used, but

sometimes other registers maybe in use. Generally other registers
are used to pass parameters and data to sub-function.

The following example uses INT 10h sub-function 0Eh to type a

"Hello!" message. This functions displays a character on the screen,
advancing the cursor and scrolling the screen as necessary.

ORG 100h ; directive to make a simple .com

file.

; The sub-function that we are using

; does not modify the AH register on

; return, so we may set it only once.

MOV AH, 0Eh ; select sub-function.

; INT 10h / 0Eh sub-function

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

; receives an ASCII code of the

; character that will be printed

; in AL register.

MOV AL, 'H' ; ASCII code: 72

INT 10h ; print it!

MOV AL, 'e' ; ASCII code: 101

INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108

INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108

INT 10h ; print it!

MOV AL, 'o' ; ASCII code: 111

INT 10h ; print it!

MOV AL, '!' ; ASCII code: 33

INT 10h ; print it!

RET ; returns to operating system.

Copy & paste the above program to emu8086 source code editor, and

press [Compile and Emulate] button. Run it!

See list of supported interrupts for more information about

interrupts.

http://www.emu8086.com/assembler_tutorial/8086_bios_and_dos_interrupts.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

6) 8086 assembler tutorial for beginners

(part 5)

Library of common functions -

emu8086.inc

To make programming easier there are some common functions that

can be included in your program. To make your program use
functions defined in other file you should use the INCLUDE directive

followed by a file name. Compiler automatically searches for the file
in the same folder where the source file is located, and if it cannot

find the file there - it searches in Inc folder.

Currently you may not be able to fully understand the contents of the
emu8086.inc (located in Inc folder), but it's OK, since you only

need to understand what it can do.

To use any of the functions in emu8086.inc you should have the
following line in the beginning of your source file:

include 'emu8086.inc'

emu8086.inc defines the following macros:

 PUTC char - macro with 1 parameter, prints out an ASCII char
at current cursor position.

 GOTOXY col, row - macro with 2 parameters, sets cursor
position.

 PRINT string - macro with 1 parameter, prints out a string.

 PRINTN string - macro with 1 parameter, prints out a string.

The same as PRINT but automatically adds "carriage return" at

the end of the string.

 CURSOROFF - turns off the text cursor.

 CURSORON - turns on the text cursor.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

To use any of the above macros simply type its name somewhere in

your code, and if required parameters, for example:

include emu8086.inc

ORG 100h

PRINT 'Hello World!'

GOTOXY 10, 5

PUTC 65 ; 65 - is an ASCII code for 'A'

PUTC 'B'

RET ; return to operating system.

END ; directive to stop the compiler.

When compiler process your source code it searches the

emu8086.inc file for declarations of the macros and replaces the
macro names with real code. Generally macros are relatively small

parts of code, frequent use of a macro may make your executable too
big (procedures are better for size optimization).

emu8086.inc also defines the following procedures:

 PRINT_STRING - procedure to print a null terminated string

at current cursor position, receives address of string in DS:SI
register. To use it declare: DEFINE_PRINT_STRING before

END directive.

 PTHIS - procedure to print a null terminated string at current

cursor position (just as PRINT_STRING), but receives address
of string from Stack. The ZERO TERMINATED string should be

defined just after the CALL instruction. For example:

CALL PTHIS

db 'Hello World!', 0

To use it declare: DEFINE_PTHIS before END directive.

 GET_STRING - procedure to get a null terminated string from

a user, the received string is written to buffer at DS:DI, buffer
size should be in DX. Procedure stops the input when 'Enter' is

pressed. To use it declare: DEFINE_GET_STRING before END
directive.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

 CLEAR_SCREEN - procedure to clear the screen, (done by

scrolling entire screen window), and set cursor position to top
of it. To use it declare: DEFINE_CLEAR_SCREEN before END

directive.

 SCAN_NUM - procedure that gets the multi-digit SIGNED
number from the keyboard, and stores the result in CX register.

To use it declare: DEFINE_SCAN_NUM before END directive.

 PRINT_NUM - procedure that prints a signed number in AX

register. To use it declare: DEFINE_PRINT_NUM and
DEFINE_PRINT_NUM_UNS before END directive.

 PRINT_NUM_UNS - procedure that prints out an unsigned
number in AX register. To use it declare:

DEFINE_PRINT_NUM_UNS before END directive.

To use any of the above procedures you should first declare the
function in the bottom of your file (but before the END directive), and

then use CALL instruction followed by a procedure name. For
example:

include 'emu8086.inc'

ORG 100h

LEA SI, msg1 ; ask for the number

CALL print_string ;

CALL scan_num ; get number in CX.

MOV AX, CX ; copy the number to AX.

; print the following string:

CALL pthis

DB 13, 10, 'You have entered: ', 0

CALL print_num ; print number in AX.

RET ; return to operating system.

msg1 DB 'Enter the number: ', 0

DEFINE_SCAN_NUM

DEFINE_PRINT_STRING

DEFINE_PRINT_NUM

DEFINE_PRINT_NUM_UNS ; required for

print_num.

DEFINE_PTHIS

END ; directive to stop the compiler.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

First compiler processes the declarations (these are just regular the

macros that are expanded to procedures). When compiler gets to

CALL instruction it replaces the procedure name with the address of

the code where the procedure is declared. When CALL instruction is

executed control is transferred to procedure. This is quite useful,

since even if you call the same procedure 100 times in your code you

will still have relatively small executable size. Seems complicated,

isn't it? That's ok, with the time you will learn more, currently it's

required that you understand the basic principle.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

7) 8086 assembler tutorial for beginners

(part 6)

Arithmetic and logic instructions

Most Arithmetic and Logic Instructions affect the processor status

register (or Flags)

As you may see there are 16 bits in this register, each bit is called a

flag and can take a value of 1 or 0.

 Carry Flag (CF) - this flag is set to 1 when there is an

unsigned overflow. For example when you add bytes 255 +
1 (result is not in range 0...255). When there is no overflow

this flag is set to 0.

 Zero Flag (ZF) - set to 1 when result is zero. For none zero

result this flag is set to 0.

 Sign Flag (SF) - set to 1 when result is negative. When result

is positive it is set to 0. Actually this flag take the value of the
most significant bit.

 Overflow Flag (OF) - set to 1 when there is a signed
overflow. For example, when you add bytes 100 + 50 (result

is not in range -128...127).

 Parity Flag (PF) - this flag is set to 1 when there is even

number of one bits in result, and to 0 when there is odd
number of one bits. Even if result is a word only 8 low bits are

analyzed!

 Auxiliary Flag (AF) - set to 1 when there is an unsigned
overflow for low nibble (4 bits).

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

 Interrupt enable Flag (IF) - when this flag is set to 1 CPU

reacts to interrupts from external devices.

 Direction Flag (DF) - this flag is used by some instructions to

process data chains, when this flag is set to 0 - the processing

is done forward, when this flag is set to 1 the processing is
done backward.

There are 3 groups of instructions.

First group: ADD, SUB,CMP, AND, TEST, OR, XOR

These types of operands are supported:

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

After operation between operands, result is always stored in first

operand. CMP and TEST instructions affect flags only and do not
store a result (these instruction are used to make decisions during

program execution).

These instructions affect these flags only:
 CF, ZF, SF, OF, PF, AF.

 ADD - add second operand to first.

 SUB - Subtract second operand to first.

 CMP - Subtract second operand from first for flags only.

 AND - Logical AND between all bits of two operands. These

rules apply:

1 AND 1 = 1

1 AND 0 = 0

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

0 AND 1 = 0

0 AND 0 = 0

As you see we get 1 only when both bits are 1.

 TEST - The same as AND but for flags only.

 OR - Logical OR between all bits of two operands. These rules
apply:

1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0

As you see we get 1 every time when at least one of the bits is

1.

 XOR - Logical XOR (exclusive OR) between all bits of two
operands. These rules apply:

1 XOR 1 = 0

1 XOR 0 = 1

0 XOR 1 = 1

0 XOR 0 = 0

As you see we get 1 every time when bits are different from

each other.

Second group: MUL, IMUL, DIV, IDIV

These types of operands are supported:

REG

memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

MUL and IMUL instructions affect these flags only:

 CF, OF
When result is over operand size these flags are set to 1, when result

fits in operand size these flags are set to 0.

For DIV and IDIV flags are undefined.

 MUL - Unsigned multiply:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

 IMUL - Signed multiply:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

 DIV - Unsigned divide:

when operand is a byte:
AL = AX / operand

AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand

DX = remainder (modulus). .

 IDIV - Signed divide:

when operand is a byte:
AL = AX / operand

AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand

DX = remainder (modulus). .

Third group: INC, DEC, NOT, NEG

These types of operands are supported:

REG

memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

INC, DEC instructions affect these flags only:
 ZF, SF, OF, PF, AF.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

NOT instruction does not affect any flags!

NEG instruction affects these flags only:

 CF, ZF, SF, OF, PF, AF.

 NOT - Reverse each bit of operand.

 NEG - Make operand negative (two's complement). Actually it

reverses each bit of operand and then adds 1 to it. For example
5 will become -5, and -2 will become 2.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

8) 8086 assembler tutorial for beginners

(part 7)

program flow control

controlling the program flow is a very important thing, this is where

your program can make decisions according to certain conditions.

 unconditional jumps

The basic instruction that transfers control to another point in

the program is JMP.

The basic syntax of JMP instruction:

JMP label

To declare a label in your program, just type its name and add
":" to the end, label can be any character combination but it

cannot start with a number, for example here are 3 legal label
definitions:

label1:

label2:

a:

Label can be declared on a separate line or before any other

instruction, for example:

x1:

MOV AX, 1

x2: MOV AX, 2

here's an example of JMP instruction:

org 100h

mov ax, 5 ; set ax to 5.

mov bx, 2 ; set bx to 2.

jmp calc ; go to 'calc'.

back: jmp stop ; go to 'stop'.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

calc:

add ax, bx ; add bx to ax.

jmp back ; go 'back'.

stop:

ret ; return to operating system.

Of course there is an easier way to calculate the some of two

numbers, but it's still a good example of JMP instruction.
As you can see from this example JMP is able to transfer

control both forward and backward. It can jump anywhere in
current code segment (65,535 bytes).

 Short Conditional Jumps

Unlike JMP instruction that does an unconditional jump, there

are instructions that do a conditional jumps (jump only when
some conditions are in act). These instructions are divided in

three groups, first group just test single flag, second compares
numbers as signed, and third compares numbers as unsigned.

Jump instructions that test single flag

Instruction Description Condition
Opposite

Instruction

JZ , JE Jump if Zero (Equal). ZF = 1 JNZ, JNE

JC , JB,

JNAE

Jump if Carry (Below, Not

Above Equal).
 CF = 1 JNC, JNB, JAE

JS Jump if Sign. SF = 1 JNS

JO Jump if Overflow. OF = 1 JNO

JPE, JP Jump if Parity Even. PF = 1 JPO

JNZ , JNE Jump if Not Zero (Not Equal). ZF = 0 JZ, JE

JNC , JNB,

JAE

Jump if Not Carry (Not Below,

Above Equal).
 CF = 0 JC, JB, JNAE

JNS Jump if Not Sign. SF = 0 JS

JNO Jump if Not Overflow. OF = 0 JO

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

JPO, JNP Jump if Parity Odd (No Parity). PF = 0 JPE, JP

as you may already notice there are some instructions that do

that same thing, that's correct, they even are assembled into
the same machine code, so it's good to remember that when

you compile JE instruction - you will get it disassembled as: JZ,

JC is assembled the same as JB etc...
different names are used to make programs easier to

understand, to code and most importantly to remember. very
offset dissembler has no clue what the original instruction was

look like that's why it uses the most common name.

if you emulate this code you will see that all instructions are
assembled into JNB, the operational code (opcode) for this

instruction is 73h this instruction has fixed length of two bytes,
the second byte is number of bytes to add to the IP register if

the condition is true. because the instruction has only 1 byte to
keep the offset it is limited to pass control to -128 bytes back

or 127 bytes forward, this value is always signed.

 jnc a

 jnb a

 jae a

 mov ax, 4

 a: mov ax, 5

 ret

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

9) 8086 assembler tutorial for beginners

(part 8)

Procedures

Procedure is a part of code that can be called from your program in

order to make some specific task. Procedures make program more
structural and easier to understand. Generally procedure returns to

the same point from where it was called.

The syntax for procedure declaration:
name PROC

 ; here goes the code

 ; of the procedure ...

RET

name ENDP

name - is the procedure name, the same name should be in the top

and the bottom, this is used to check correct closing of procedures.

Probably, you already know that RET instruction is used to return to
operating system. The same instruction is used to return from

procedure (actually operating system sees your program as a special
procedure).

PROC and ENDP are compiler directives, so they are not assembled

into any real machine code. Compiler just remembers the address of
procedure.

CALL instruction is used to call a procedure.

Here is an example:

ORG 100h

CALL m1

MOV AX, 2

RET ; return to operating system.

m1 PROC

MOV BX, 5

RET ; return to caller.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

m1 ENDP

END

The above example calls procedure m1, does MOV BX, 5, and
returns to the next instruction after CALL: MOV AX, 2.

There are several ways to pass parameters to procedure, the easiest
way to pass parameters is by using registers, here is another

example of a procedure that receives two parameters in AL and BL
registers, multiplies these parameters and returns the result in AX

register:

ORG 100h

MOV AL, 1

MOV BL, 2

CALL m2

CALL m2

CALL m2

CALL m2

RET ; return to operating system.

m2 PROC

MUL BL ; AX = AL * BL.

RET ; return to caller.

m2 ENDP

END

In the above example value of AL register is update every time the

procedure is called, BL register stays unchanged, so this algorithm
calculates 2 in power of 4,

so final result in AX register is 16 (or 10h).

Here goes another example,

that uses a procedure to print a Hello World! message:

ORG 100h

LEA SI, msg ; load address of msg to SI.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

CALL print_me

RET ; return to operating system.

;

==

; this procedure prints a string, the string should be null

; terminated (have zero in the end),

; the string address should be in SI register:

print_me PROC

next_char:

 CMP b.[SI], 0 ; check for zero to stop

 JE stop ;

 MOV AL, [SI] ; next get ASCII char.

 MOV AH, 0Eh ; teletype function number.

 INT 10h ; using interrupt to print a char in AL.

 ADD SI, 1 ; advance index of string array.

 JMP next_char ; go back, and type another char.

stop:

RET ; return to caller.

print_me ENDP

;

==

msg DB 'Hello World!', 0 ; null terminated string.

END

"b." - prefix before [SI] means that we need to compare bytes, not

words. When you need to compare words add "w." prefix instead.

When one of the compared operands is a register it's not required

because compiler knows the size of each register.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

10) 8086 assembler tutorial for

beginners (part 9)

The Stack

Stack is an area of memory for keeping temporary data. Stack is

used by CALL instruction to keep return address for procedure, RET
instruction gets this value from the stack and returns to that offset.

Quite the same thing happens when INT instruction calls an

interrupt, it stores in stack flag register, code segment and offset.
IRET instruction is used to return from interrupt call.

We can also use the stack to keep any other data,

there are two instructions that work with the stack:

PUSH - stores 16 bit value in the stack.

POP - gets 16 bit value from the stack.

Syntax for PUSH instruction:

PUSH REG

PUSH SREG

PUSH memory

PUSH immediate

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, CS.

memory: [BX], [BX+SI+7], 16 bit variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

Syntax for POP instruction:

POP REG

POP SREG

POP memory

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, (except CS).

memory: [BX], [BX+SI+7], 16 bit variable, etc...

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Notes:

 PUSH and POP work with 16 bit values only!

 Note: PUSH immediate works only on 80186 CPU and later!

The stack uses LIFO (Last In First Out) algorithm,

this means that if we push these values one by one into the stack:

1, 2, 3, 4, 5
the first value that we will get on pop will be 5, then 4, 3, 2, and only

then 1.

It is very important to do equal number of PUSHs and POPs,

otherwise the stack maybe corrupted and it will be impossible to

return to operating system. As you already know we use RET
instruction to return to operating system, so when program starts

there is a return address in stack (generally it's 0000h).

PUSH and POP instruction are especially useful because we don't
have too much registers to operate with, so here is a trick:

 Store original value of the register in stack (using PUSH).

 Use the register for any purpose.

 Restore the original value of the register from stack (using

POP).

Here is an example:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

ORG 100h

MOV AX, 1234h

PUSH AX ; store value of AX in stack.

MOV AX, 5678h ; modify the AX value.

POP AX ; restore the original value of

AX.

RET

END

Another use of the stack is for exchanging the values,

here is an example:

ORG 100h

MOV AX, 1212h ; store 1212h in AX.

MOV BX, 3434h ; store 3434h in BX

PUSH AX ; store value of AX in stack.

PUSH BX ; store value of BX in stack.

POP AX ; set AX to original value of BX.

POP BX ; set BX to original value of AX.

RET

END

The exchange happens because stack uses LIFO (Last In First Out)
algorithm, so when we push 1212h and then 3434h, on pop we will

first get 3434h and only after it 1212h.

The stack memory area is set by SS (Stack Segment) register, and
SP (Stack Pointer) register. Generally operating system sets values of

these registers on program start.

"PUSH source" instruction does the following:

 Subtract 2 from SP register.

 Write the value of source to the address SS:SP.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

"POP destination" instruction does the following:

 Write the value at the address SS:SP to destination.

 Add 2 to SP register.

The current address pointed by SS:SP is called the top of the

stack.

For COM files stack segment is generally the code segment, and

stack pointer is set to value of 0FFFEh. At the address SS:0FFFEh

stored a return address for RET instruction that is executed in the

end of the program.

You can visually see the stack operation by clicking on [Stack] button

on emulator window. The top of the stack is marked with "<" sign.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

11) 8086 assembler tutorial for

beginners (part 10)

Macros

Macros are just like procedures, but not really. Macros look like

procedures, but they exist only until your code is compiled, after
compilation all macros are replaced with real instructions. If you

declared a macro and never used it in your code, compiler will simply

ignore it. emu8086.inc is a good example of how macros can be
used, this file contains several macros to make coding easier for you.

Macro definition:

name MACRO [parameters,...]

 <instructions>

ENDM

Unlike procedures, macros should be defined above the code that
uses it, for example:

MyMacro MACRO p1, p2, p3

 MOV AX, p1

 MOV BX, p2

 MOV CX, p3

ENDM

ORG 100h

MyMacro 1, 2, 3

MyMacro 4, 5, DX

RET

The above code is expanded into:

MOV AX, 00001h

MOV BX, 00002h

MOV CX, 00003h

MOV AX, 00004h

MOV BX, 00005h

http://www.emu8086.com/assembler_tutorial/asm_tutorial_05.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

MOV CX, DX

Some important facts about macros and procedures:

 When you want to use a procedure you should use CALL instruction, for
example:

CALL MyProc

 When you want to use a macro, you can just type its name. For example:

MyMacro

 Procedure is located at some specific address in memory, and if you use the

same procedure 100 times, the CPU will transfer control to this part of the

memory. The control will be returned back to the program by RET

instruction. The stack is used to keep the return address. The CALL

instruction takes about 3 bytes, so the size of the output executable file

grows very insignificantly, no matter how many time the procedure is used.

 Macro is expanded directly in program's code. So if you use the same macro

100 times, the compiler expands the macro 100 times, making the output

executable file larger and larger, each time all instructions of a macro are

inserted.

 You should use stack or any general purpose registers to pass parameters

to procedure.

 To pass parameters to macro, you can just type them after the macro name.
For example:

MyMacro 1, 2, 3

 To mark the end of the macro ENDM directive is enough.

 To mark the end of the procedure, you should type the name of the
procedure before the ENDP directive.

Macros are expanded directly in code, therefore if there are labels

inside the macro definition you may get "Duplicate declaration" error

when macro is used for twice or more. To avoid such problem, use
LOCAL directive followed by names of variables, labels or procedure

names. For example:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

MyMacro2 MACRO

 LOCAL label1, label2

 CMP AX, 2

 JE label1

 CMP AX, 3

 JE label2

 label1:

 INC AX

 label2:

 ADD AX, 2

ENDM

ORG 100h

MyMacro2

MyMacro2

RET

If you plan to use your macros in several programs, it may be a good

idea to place all macros in a separate file. Place that file in Inc folder

and use INCLUDE file-name directive to use macros. See Library

of common functions - emu8086.inc for an example of such file.

http://www.emu8086.com/assembler_tutorial/asm_tutorial_05.html
http://www.emu8086.com/assembler_tutorial/asm_tutorial_05.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

12) 8086 assembler tutorial for

beginners (part 11)

making your own operating system

Usually, when a computer starts it will try to load the first 512-byte
sector (that's Cylinder 0, Head 0, Sector 1) from any diskette in your

A: drive to memory location 0000h:7C00h and give it control. If this

fails, the BIOS tries to use the MBR of the first hard drive instead.

This tutorial covers booting up from a floppy drive, the same
principles are used to boot from a hard drive. But using a floppy drive

has several advantages:

 you can keep your existing operating system intact (windows,
dos, linux, unix, be-os...).

 it is easy and safe to modify the boot record of a floppy disk.

example of a simple floppy disk boot program:

; directive to create BOOT file:

#make_boot#

; Boot record is loaded at 0000:7C00,

; so inform compiler to make required

; corrections:

ORG 7C00h

PUSH CS ; make sure DS=CS

POP DS

; load message address into SI register:

LEA SI, msg

; teletype function id:

MOV AH, 0Eh

print: MOV AL, [SI]

 CMP AL, 0

 JZ done

 INT 10h ; print using teletype.

 INC SI

 JMP print

; wait for 'any key':

done: MOV AH, 0

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

 INT 16h

; store magic value at 0040h:0072h:

; 0000h - cold boot.

; 1234h - warm boot.

MOV AX, 0040h

MOV DS, AX

MOV w.[0072h], 0000h ; cold boot.

JMP 0FFFFh:0000h ; reboot!

new_line EQU 13, 10

msg DB 'Hello This is My First Boot Program!'

 DB new_line, 'Press any key to reboot', 0

copy the above example to the source editor and press emulate. the
emulator automatically loads .bin file to 0000h:7C00h (it uses

supplementary .binf file to know where to load).

you can run it just like a regular program, or you can use the virtual
drive menu to write 512 bytes at 7c00h to boot sector of a

virtual floppy drive (it's "FLOPPY_0" file in c:\emu8086). after your
program is written to the virtual floppy drive, you can select boot

from floppy from virtual drive menu.

.bin files for boot records are limited to 512 bytes (sector size). if

your new operating system is going to grow over this size, you will
need to use a boot program to load data from other sectors (just like

micro-os_loader.asm does). an example of a tiny operating system
can be found in c:\emu8086\examples and "online":

micro-os_loader.asm

micro-os_kernel.asm

To create extensions for your Operating System (over 512 bytes),
you can use additional sectors of a floppy disk. It's recommended to

use ".bin" files for this purpose (to create ".bin" file select "BIN
Template" from "File" -> "New" menu).

To write ".bin" file to virtual floppy, select "Write .bin file to

floppy..." from "Virtual drive" menu of emulator, you should write
it anywhere but the boot sector (which is Cylinder: 0, Head: 0,

http://www.emu8086.com/vb/index_asm.html
http://www.emu8086.com/dr/asm2html/assembler_source_code/micro-os_loader.asm.html
http://www.emu8086.com/dr/asm2html/assembler_source_code/micro-os_kernel.asm.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Sector: 1).

you can use this utility to write .bin files to virtual floppy disk

("FLOPPY_0" file), instead of "write 512 bytes at 7c00h to boot
sector" menu. however, you should remember that .bin file that is

designed to be a boot record should always be written to cylinder: 0,
head: 0, sector: 1

Boot Sector Location:
Cylinder: 0

Head: 0

Sector: 1

to write .bin files to real floppy disk use writebin.asm, just compile it

to com file and run it from command prompt. to write a boot record
type: writebin loader.bin ; to write kernel module type: writebin

kernel.bin /k
/k - parameter tells the program to write the file at sector 2 instead

of sector 1. it does not matter in what order you write the files onto
floppy drive, but it does matter where you write them.

mote: this boot record is not MS-DOS/Windows compatible boot
sector, it's not even Linux or Unix compatible, operating system may

not allow you to read or write files on this diskette until you re-format
it, therefore make sure the diskette you use doesn't contain any

important information. however you can write and read anything to

and from this disk using low level disk access interrupts, it's even
possible to protect valuable information from the others this way;

even if someone gets the disk he will probably think that it's empty
and will reformat it because it's the default option in windows

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

operating system... such a good type of self destructing data carrier

:)

idealized floppy drive and diskette structure:

for a 1440 kb diskette:

 floppy disk has 2 sides, and there are 2 heads; one for each
side (0..1), the drive heads move above the surface of the disk

on each side.

 each side has 80 cylinders (numbered 0..79).

 each cylinder has 18 sectors (1..18).

 each sector has 512 bytes.

 total size of floppy disk is: 2 x 80 x 18 x 512 = 1,474,560
bytes.

note: the MS-DOS (windows) formatted floppy disk has slightly less

free space on it (by about 16,896 bytes) because the operating

system needs place to store file names and directory structure (often

called FAT or file system allocation table). more file names - less disk

space. the most efficient way to store files is to write them directly to

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

sectors instead of using file system, and in some cases it is also the

most reliable way, if you know how to use it.

to read sectors from floppy drive use INT 13h / AH = 02h.

http://www.emu8086.com/assembly_language_tutorial_assembler_reference/8086_bios_and_dos_interrupts.html#int13h_02h

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

13) 8086 assembler tutorial for

beginners (part 12)

Controlling External Devices

There are 7 devices attached to the emulator: traffic lights, stepper-
motor, LED display, thermometer, printer, robot and simple test

device. You can view devices when you click "Virtual Devices" menu

of the emulator.

For technical information refer to I/O ports section of emu8086
reference.

In general, it is possible to use any x86 family CPU to control all kind

of devices, the difference maybe in base I/O port number, this can be
altered using some tricky electronic equipment. Usually the ".bin" file

is written into the Read Only Memory (ROM) chip, the system reads
program from that chip, loads it in RAM module and runs the

program. This principle is used for many modern devices such as
micro-wave ovens and etc...

Traffic Lights

Usually to control the traffic lights an array (table) of values is used.

In certain periods of time the value is read from the array and sent to
a port. For example:

; controlling external device with 8086 microprocessor.

http://www.emu8086.com/assembler_tutorial/io.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

; realistic test for c:\emu8086\devices\Traffic_Lights.exe

#start=Traffic_Lights.exe#

name "traffic"

mov ax, all_red

out 4, ax

mov si, offset situation

next:

mov ax, [si]

out 4, ax

; wait 5 seconds (5 million microseconds)

mov cx, 4Ch ; 004C4B40h = 5,000,000

mov dx, 4B40h

mov ah, 86h

int 15h

add si, 2 ; next situation

cmp si, sit_end

jb next

mov si, offset situation

jmp next

; FEDC_BA98_7654_3210

situation dw 0000_0011_0000_1100b

s1 dw 0000_0110_1001_1010b

s2 dw 0000_1000_0110_0001b

s3 dw 0000_1000_0110_0001b

s4 dw 0000_0100_1101_0011b

sit_end = $

all_red equ 0000_0010_0100_1001b

Stepper-Motor

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

The motor can be half stepped by turning on pair of magnets,
followed by a single and so on.

The motor can be full stepped by turning on pair of magnets, followed

by another pair of magnets and in the end followed by a single
magnet and so on. The best way to make full step is to make two half

steps.

Half step is equal to 11.25 degrees.
Full step is equal to 22.5 degrees.

The motor can be turned both clock-wise and counter-clock-wise.

See stepper_motor.asm in c:\emu8086\examples\

See also I/O ports section of emu8086 reference.

http://www.emu8086.com/dr/asm2html/assembler_source_code/stepper_motor.asm.html
http://www.emu8086.com/assembler_tutorial/io.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Robot

Complete list of robot instruction set is given in I/O ports section of

emu8086 reference.

To control the robot a complex algorithm should be used to achieve

maximum efficiency. The simplest, yet very inefficient, is random

moving algorithm, see robot.asm in c:\emu8086\examples\

It is also possible to use a data table (just like for Traffic Lights), this

can be good if robot always works in the same surroundings.

http://www.emu8086.com/assembler_tutorial/io.html
http://www.emu8086.com/dr/asm2html/assembler_source_code/robot.asm.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

14) Source Code Editor

Using the Mouse

Editor supports the following mouse actions:

Mouse Action Result

L-Button click over text
Changes the caret

position

R-Button click
Displays the right click

menu

L-Button down over selection, and drag Moves text

Ctrl + L-Button down over selection, and drag Copies text

L-Button click over left margin Selects line

L-Button click over left margin, and drag Selects multiple lines

Alt + L-Button down, and drag Select columns of text

L-Button double click over text
Select word under

cursor

Spin IntelliMouse mouse wheel
Scroll the window

vertically

Single click IntelliMouse mouse wheel
Select the word under

the cursor

Double click IntelliMouse mouse wheel
Select the line under

the cursor

Click and drag splitter bar

Split the window into

multiple views or

adjust the current

splitter position

Double click splitter bar

Split the window in half

into multiple views or

unsplit the window if

already split

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Editor Hot Keys:

Command Keystroke

===

Toggle Bookmark Control + F2

Next Bookmark F2

Prev Bookmark Shift + F2

Copy Control + C, Control + Insert

Cut Control + X, Shift + Delete, Control + Alt + W

Cut Line Control + Y

Cut Sentence Control + Alt + K

Paste Control + V, Shift + Insert

Undo Control + Z, Alt + Backspace

Document End Control + End

Document End Extend Control + Shift + End

Document Start Control + Home

Document Start Extend Control + Shift + Home

Find Control + F, Alt + F3

Find Next F3

Find Next Word Control + F3

Find Prev Shift + F3

Find Prev Word Control + Shift + F3

Find and Replace Control + H, Control + Alt + F3

Go To Line Control + G

Go To Match Brace Control +]

Select All Control + A

Select Line Control + Alt + F8

Select Swap Anchor Control + Shift + X

Insert New Line Above Control + Shift + N

Indent Selection Tab

Outdent Selection Shift + Tab

Tabify Selection Control + Shift + T

Untabify Selection Control + Shift + Space

Lowercase Selection Control + L

Uppercase Selection Control + U, Control + Shift + U

Left Word Control + Left

Right Word Control + Right

Left Sentence Control + Alt + Left

Right Sentence Control + Alt + Right

Toggle Overtype Insert

Display Whitespace Control + Alt + T

Scroll Window Up Control + Down

Scroll Window Down Control + Up

Scroll Window Left Control + PageUp

Scroll Window Right Control + PageDown

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Delete Word To End Control + Delete

Delete Word To Start Control + Backspace

Extend Char Left Shift + Left

Extend Char Right Shift + Right

Extend Left Word Control + Shift + Left

Extend Right Word Control + Shift + Right

Extend to Line Start Shift + Home

Extend to Line End Shift + End

Extend Line Up Shift + Up

Extend Line Down Shift + Down

Extend Page Up Shift + PgUp

Extend Page Down Shift + Next

Comment Block Ctrl + Q

Uncomment Block Ctrl + W

Regular Expression Syntax Rules for Search and Replace

Wildcards:

 ? (for any character),

 + (for one or more ot something),

 * (for zero or more of something).

Sets of characters:

 Characters enclosed in square brackets

 will be treated as an option set.

 Character ranges may be specified

 with a - (e.g. [a-c]).

Logical OR:

 Subexpressions may be ORed together

 with the | pipe symbol.

Parenthesized subexpressions:

 A regular expression may be enclosed

 within parentheses and will be treated as a unit.

Escape characters:

 Sequences such as:

 \t - tab

 etc.

 will be substituted for an equivalent

 single character. \\ represents the backslash.

If there are problems with the source editor you may need to

manually copy "cmax20.ocx" from program's folder into

Windows\System or Windows\System32 replacing any existing

version of that file (restart may be required before system allows to

replace existing file).

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

15)compiling the assembly code

type your code inside the text area, and click compile button. you
will be asked for a place where to save the compiled file.

after successful compilation you can click emulate button to load the
compiled file in emulator.

the output file type directives:

 #make_com#

 #make_bin#

 #make_boot#

 #make_exe#

you can insert these directives in the source code to specify the
required output type for the file. only if compiler cannot determine

the output type automatically and it when it cannot find any of these

directives it may ask you for output type before creating the file.

there is virtually no difference between how .com and .bin are
assembled because these files are raw binary files, but .exe file has a

special header in the beginning of the file that is used by the
operating system to determine some properties of the executable file.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

description of output file types:

 #make_com# - the oldest and the simplest format of an

executable file, such files are loaded with 100h prefix (256
bytes). Select Clean from the New menu if you plan to compile

a COM file. Compiler directive ORG 100h should be added
before the code. Execution always starts from the first byte of

the file.
This file type is selected automatically if org 100h directive is

found in the code.
Supported by DOS and Windows Command Prompt.

 #make_exe# - more advanced format of an executable file.

not limited by size and number of segments. stack segment
should be defined in the program. you may select exe

template from the new menu in to create a simple exe
program with pre-defined data, stack, and code segments.

the entry point (where execution starts) is defined by a
programmer. this file type is selected automatically if stack

segment is found.
supported by dos and windows command prompt.

 #make_bin# - a simple executable file. You can define the
values of all registers, segment and offset for memory area

where this file will be loaded. When loading "MY.BIN" file to
emulator it will look for a "MY.BINF" file, and load "MY.BIN"

file to location specified in "MY.BINF" file, registers are also set

using information in that file (open this file in a text editor to
edit or investigate).

in case the emulator is not able to find "MY.BINF" file, current
register values are used and "MY.BIN" file is loaded at current

CS:IP.
the execution starts from values in CS:IP.

bin file type is not unique to the emulator, however the
directives are unique and will not work if .bin file is executed

outside of the emulator because their output is stored in a
separate file independently from pure binary code.

.BINF file is created automatically if assembler finds any of the

following directives.

these directives can be inserted into any part of the source

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

code to preset registers or memory before starting the

program's execution:

 #make_bin#

 #LOAD_SEGMENT=1234#

 #LOAD_OFFSET=0000#

 #AL=12#

 #AH=34#

 #BH=00#

 #BL=00#

 #CH=00#

 #CL=00#

 #DH=00#

 #DL=00#

 #DS=0000#

 #ES=0000#

 #SI=0000#

 #DI=0000#

 #BP=0000#

 #CS=1234#

 #IP=0000#

 #SS=0000#

 #SP=0000#

 #MEM=0100:FFFE,00FF-0100:FF00,F4#

all values must be in hexadecimal.

when not specified these values are set by default:
LOAD_SEGMENT = 0100

LOAD_OFFSET = 0000
CS = ES = SS = DS = 0100

IP = 0000

if LOAD_SEGMENT and LOAD_OFFSET are not defined, then
CS and IP values are used and vice-versa.

"#mem=..." directive can be used to write values to memory

before program starts
#MEM=nnnn,[bytestring]-nnnn:nnnn,[bytestring]#

for example:

#MEM=1000,01ABCDEF0122-0200,1233#
all values are in hex, nnnn - for physical address, or

(nnnn:nnnn) for logical address.

- separates the entries. spaces are allowed inside.

note: all values are in hex. hexadecimal suffix/prefix is not

required. for each byte there must be exactly 2 characters, for
example: 0A, 12 or 00.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

if none of the above directives directives are preset in source

code, binf file is not created.
when emulator loads .bin file without .binf file it will use

c:\emu8086\default.binf instead.

this also applies to any other files with extensions that are
unfamiliar to the emulator.

the format of a typical ".BINF" file:

 8000 ; load to segment.

 0000 ; load to offset.

 55 ; AL

 66 ; AH

 77 ; BL

 88 ; BH

 99 ; CL

 AA ; CH

 BB ; DL

 CC ; DH

 DDEE ; DS

 ABCD ; ES

 EF12 ; SI

 3456 ; DI

 7890 ; BP

 8000 ; CS

 0000 ; IP

 C123 ; SS

 D123 ; SP

we can observe that first goes a number in hexadecimal form

and then a comment.
Comments are added just to make some order, when emulator

loads a BINF file it does not care about comments it just looks
for a values on specific lines, so line order is very important.

NOTE: existing .binf file is automatically overwritten on
re-compile.

In case load to offset value is not zero (0000), ORG ????h

should be added to the source of a .BIN file where ????h is the
loading offset, this should be done to allow compiler calculate

correct addresses.

 #make_boot# - this type is a copy of the first track of a
floppy disk (boot sector). the only difference from #make_bin#

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

is that loading segment is predefined to 0000:7c00h (this value

is written to accompanied .binf file). in fact you can use
#make_bin# without any lack of performance, however to

make correct test in emulator you will need to add these

directives: #cs=0# and #ip=7c00# - assembler writes these
values into .binf file.

You can write a boot sector of a virtual floppy (FLOPPY_0) via
menu in emulator:

[virtual drive] -> [write 512 bytes at 7c00 to boot
sector]

First you should compile a .bin file and load it in emulator (see
"micro-os_loader.asm" and "micro-os_kernel.asm" in

"c:\emu8086\examples\" for more information).

then select [virtual drive] -> [boot from floppy] menu to
boot emulator from a virtual floppy.

then, if you are curious, you may write the same files to real

floppy and boot your computer from it. you can use

"writebin.asm" from c:\emu8086\examples\
micro-operating system does not have ms-dos/windows

compatible boot sector, so it's better to use an empty floppy
disk. refer to tutorial 11 for more information.

compiler directive org 7c00h should be added before the code,
when computer starts it loads first track of a floppy disk at the

address 0000:7c00.
the size of a boot record file should be less then 512 bytes

(limited by the size of a disk sector).
execution always starts from the first byte of the file.

this file type is unique to emu8086 emulator.

error processing

assembly language compiler (or assembler) reports about errors in a
separate information window:

http://www.emu8086.com/assembler_tutorial/asm_tutorial_11.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

MOV DS, 100 - is illegal instruction because segment registers cannot

be set directly, general purpose register should be used, for example
MOV AX, 100

MOV DS, AX

MOV AL, 300 - is illegal instruction because AL register has only 8 bits,

and thus maximum value for it is 255 (or 11111111b), and the
minimum is -128.

When saving an assembled file, compiler also saves 2 other files that
are later used by the emulator to show original source code when you

run the binary executable, and select corresponding lines. Very often
the original code differs from the disabled code because there are no

comments, no segment and no variable declarations. Compiler
directives produce no binary code, but everything is converted to

pure machine code. Sometimes a single original instruction is

assembled into several machine code instructions, this is done mainly

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

for the compatibility with original 8086 microprocessor (for example

ROL AL, 5 is assembled into five sequential ROL AL, 1 instructions).

 *.~asm - this file contains the original source code that was

used to make an executable file.

 *.debug - this file has information that enables the emulator

select lines of original source code while running the machine
code.

 *.symbol - symbol table, it contains information that enables
to show the "variables" window. It is a plain text file, so you

may view it in any text editor (including emu8086 source
editor).

 *.binf - this ASCII file contains information that is used by
emulator to load BIN file at specified location, and set register

values prior execution; (created only if an executable is a BIN

file).

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

16) Using the microprocessor emulator

If you want to load your code into the emulator, just click

Emulate .

But you can also use emulator to load executables even if you
don't have the original source code. Select Show emulator from

the Emulator menu.

Try loading files from "MyBuild" folder. If there are no files in

"MyBuild" folder return to source editor, select Examples from the
File menu, load any example, compile it and then load into the

emulator:

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

[Single Step] button executes instructions one by one stopping
after each instruction.

[Run] button executes instructions one by one with delay set by
step delay between instructions.

Double click on register text-boxes opens Extended viewer

window with value of that register converted to all possible forms.
You can modify the value of the register directly in this window.

Double click on memory list item opens Extended viewer with
WORD value loaded from memory list at selected location. Less

significant byte is at lower address: LOW BYTE is loaded from
selected position and HIGH BYTE from next memory address. You

can modify the value of the memory word directly in the
Extended Viewer window,

You can modify the values of registers on runtime by typing over

the existing values.

[Flags] button allows you to view and modify flags on runtime.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

17) Virtual drives

Emulator supports up to 4 virtual floppy drives. By default there is

a FLOPPY_0 file that is an image of a real floppy disk (the size of
that file is exactly 1,474,560 bytes).

To add more floppy drives select [Create new floppy drive]

from [Virtual drive] menu. Each time you add a floppy drive
emulator creates a FLOPPY_1, FLOPPY_2, and FLOPPY_3 files.

Created floppy disks are images of empty IBM/MS-DOS formatted

disk images. Only 4 floppy drives are supported (0..3)!
To delete a floppy drive you should close the emulator, delete the

required file manually and restart the emulator.

You can determine the number of attached floppy drives using INT
11h this function returns AX register with BIOS equipment list.

Bits 7 and 6 define the number of floppy disk drives (minus 1):
 Bits 7-6 of AX:

 00 single floppy disk.

 01 two floppy disks.

 10 three floppy disks.

 11 four floppy disks.

 Emulator starts counting attached floppy drives from starting

from the first, in case file FLOPPY_1 does not exist it stops the

check and ignores FLOPPY_2 and FLOPPY_3 files.

To write and read from floppy drive you can use INT 13h

function, see list of supported interrupts for more

information.

emulator can emulate tiny operating system, check out

operating system tutorial.

http://www.emu8086.com/assembler_tutorial/8086_bios_and_dos_interrupts.html
http://www.emu8086.com/assembler_tutorial/asm_tutorial_11.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

18) Global Memory Table

8086 CPU can access up to 1 MB of random access memory
(RAM).

This is more than enough for any kind of computations (if used
wisely).

memory table of the emulator (and typical ibm pc memory table):

physical address of

memory area in HEX
short description

00000 - 00400

Interrupt vectors. The emulator loads this file:

c:\emu8086\INT_VECT at the physical address

000000.

00400 - 00500

System information area. We use a trick to set some

parameters by loading a tiny last part (21 bytes) of

INT_VECT in that area (the size of that file is 1,045 or

415h bytes, so when loaded it takes memory from 00000

to 00415h).

this memory block is updated by the emulator when

configuration changes, see system information area

table.

00500 - A0000
A free memory area. A block of 654,080 bytes. Here

you can load your programs.

A0000 - B1000

Video memory for vga, monochrome, and other

adapters.

It is used by video mode 13h of INT 10h.

B1000 - B8000
Reserved.

Not used by the emulator.

B8000 - C0000

32 kb video memory for color graphics adapter (cga).

The emulator uses this memory area to keep 8 pages of

video memory. The emulator screen can be resized, so

less memory is required for each page, although the

emulator always uses 1000h (4096 bytes) for each page

(see INT 10h / AH=05h in the list of supported

interrupts).

C0000 - F4000 Reserved.

F4000 - 10FFEF

ROM BIOS and extensions. the emulator loads

BIOS_ROM file at the physical address 0F4000h.

addresses of interrupt table points to this memory area

to make emulation of the interrupt functions.

http://www.emu8086.com/assembler_tutorial/memory.html#sinfo
http://www.emu8086.com/assembler_tutorial/8086_bios_and_dos_interrupts.html
http://www.emu8086.com/assembler_tutorial/8086_bios_and_dos_interrupts.html

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

interrupt vector table (memory from 00000h to 00400h)

INT number address in address of

in hex interrupt vector BIOS sub-program

00 00x4 = 00 F400:0170 - CPU-generated,

 divide error.

04 04x4 = 10 F400:0180 - CPU-generated,

 INTO detected

 overflow.

10 10x4 = 40 F400:0190 - video functions.

11 11x4 = 44 F400:01D0 - get BIOS

 equipment list.

12 12x4 = 48 F400:01A0 - get memory size.

13 13x4 = 4C F400:01B0 - disk functions.

15 15x4 = 54 F400:01E0 - BIOS functions.

16 16x4 = 58 F400:01C0 - keyboard functions.

17 17x4 = 5C F400:0400 - printer.

19 19x4 = 64 FFFF:0000 - reboot.

1A 1Ax4 = 68 F400:0160 - time functions.

1E 1Ex4 = 78 F400:AFC7 - vector of diskette

 controller parameters.

20 20x4 = 80 F400:0150 - DOS function:

 terminate program.

21 21x4 = 84 F400:0200 - DOS functions.

33 33x4 = CC F400:0300 - mouse functions.

all the others ??x4 = ?? F400:0100 - default interrupt stub.

A call to BIOS sub-system is disassembled as BIOS DI (Basic Input/Output System

- Do Interrupt). To encode this 4 byte instruction, FFFF opcode prefix is used. for

example: FFFFCD10 is used to make the emulator to execute interrupt number

10h.

At address F400:0100 there is this machine code FFFFCDFF (it is decoded as INT

0FFh, it is used to generate a default error message, unless you make your own

interrupt replacement for missing functions).

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

System information area (memory from 00400h to 00500h)

address

(hex)
size description

0040h:0010 WORD

BIOS equipment list.

bit fields for BIOS-detected installed hardware:

bit(s) Description

 15-14 number of parallel devices.

 13 reserved.

 12 game port installed.

 11-9 number of serial devices.

 8 reserved.

 7-6 number of floppy disk drives (minus 1):

 00 single floppy disk;

 01 two floppy disks;

 10 three floppy disks;

 11 four floppy disks.

 5-4 initial video mode:

 00 EGA,VGA,PGA, or other with on-board video BIOS;

 01 40x25 CGA color.

 10 80x25 CGA color (emulator default).

 11 80x25 mono text.

 3 reserved.

 2 PS/2 mouse is installed.

 1 math coprocessor installed.

 0 set when booted from floppy.

0040h:0013 WORD

kilobytes of contiguous memory starting at absolute

address 00000h.

this word is also returned in AX by INT 12h.

this value is set to: 0280h (640KB).

0040h:004A WORD
number of columns on screen.

default value: 0032h (50 columns).

0040h:004E WORD

current video page start address in video memory

(after 0B800:0000).

default value: 0000h.

0040h:0050
8

WORDs

contains row and column position for the cursors on

each of eight video pages.

default value: 0000h (for all 8 WORDs).

0040h:0062 BYTE
current video page number.

default value: 00h (first page).

0040h:0084 BYTE
rows on screen minus one.

default value: 13h (19+1=20 columns).

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

19) I/O ports and Hardware Interrupts

The emulator does not reproduce any input/output devices of the
original IBM PC ®, however theoretically it may be possible to create

emulation of the original ibm pc devices. emu8086 supports user-
created virtual devices that can be accessed from assembly language

program using in and out instructions. devices that can be created
by anyone with basic programming experience in any high or low

level programming language. the simplest virtual device in assembly

language can be found in examples: simplest.asm

Input / Output ports

emu8086 supports additional devices that can be created by anyone

with basic programming experience in any language device can be
written in any language, such as: java, visual basic, vc++, delphi,

c#, .net or in any other programming language that allow to directly
read and write files. for more information and sample source code

look inside this folder: c:\emu8086\DEVICES\DEVELOPER\

The latest version of the emulator has no reserved or fixed I/O ports,
input / output addresses for custom devices are from 0000 to

0FFFFh (0 to 65535), but it is important that two devices that use

the same ports do not run simultaneously to avoid hardware conflict.

Port 100 corresponds to byte 100 in this file: c:\emu8086.io , port 0

to byte 0, port 101 to byte 101, etc...

Emulation of Hardware Interrupts

External hardware interrupts can be triggered by external peripheral
devices and microcontrollers or by the 8087 mathematical

coprocessor.

Hardware interrupts are disabled when interrupt flag (IF) is set to 0.
when interrupt flag is set to 1, the emulator continually checks first

256 bytes of this file c:\emu8086.hw if any of the bytes is none-
zero the microprocessor transfers control to an interrupt handler that

matches the triggering byte offset in emu8086.hw file (0 to 255)
according to the interrupt vector table (memory 0000-0400h) and

resets the byte in emu8086.hw to 00.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

These instructions can be used to disable and enable hardware
interrupts:

cli - clear interrupt flag (disable hardware interrupts).
sti - set interrupt flag (enable hardware interrupts).

by default hardware interrupts are enabled and are disabled

automatically when software or hardware interrupt is in the middle of
the execution.

Examples of Custom I/O Devices

Ready devices are available from virtual devices menu of the
emulator.

 Traffic Lights - port 4 (word)

the traffic lights are controlled by sending data to i/o port 4.
there are 12 lamps: 4 green, 4 yellow, and 4 red.

you can set the state of each lamp by setting its bit:

1 - the lamp is turned on.

0 - the lamp is turned off.

only 12 low bits of a word are used (0 to 11), last bits (12 to
15) are unused.

for example:

MOV AX, 0000001011110100b

OUT 4, AX

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

we use yellow hexadecimal digits in caption (to achieve

compact view), here's a conversion:
 Hex - Decimal

 A - 10

 B - 11

 C - 12 (unused)

 D - 13 (unused)

 E - 14 (unused)

F - 15 (unused)

first operand for OUT instruction is a port number (4), second

operand is a word (AX) that is written to the port. first operand
must be an immediate byte value (0..255) or DX register.

second operand must be AX or AL only.

see also traffic_lights.asm in c:\emu8086\examples.

if required you can read the data from port using IN
instruction, for example:

IN AX, 4

first operand of IN instruction (AX) receives the value from

port, second operand (4) is a port number. first operand must
be AX or AL only. second operand must be an immediate byte

value (0..255) or DX register.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

 Stepper Motor - port 7 (byte)

the stepper motor is controlled by sending data to i/o port 7.

stepper motor is electric motor that can be precisely controlled
by signals from a computer.

the motor turns through a precise angle each time it receives a

signal.

by varying the rate at which signal pulses are produced, the
motor can be run at different speeds or turned through an

exact angle and then stopped.

This is a basic 3-phase stepper motor, it has 3 magnets

controlled by bits 0, 1 and 2. other bits (3..7) are unused.

When magnet is working it becomes red. The arrow in the left
upper corner shows the direction of the last motor move. Green

line is here just to see that it is really rotating.

For example, the code below will do three clock-wise half-steps:

MOV AL, 001b ; initialize.

OUT 7, AL

MOV AL, 011b ; half step 1.

OUT 7, AL

MOV AL, 010b ; half step 2.

OUT 7, AL

MOV AL, 110b ; half step 3.

OUT 7, AL

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

If you ever played with magnets you will understand how it

works. try experimenting, or see stepper_motor.asm in
c:\emu8086\examples.

If required you can read the data from port using IN
instruction, for example:

IN AL, 7

Stepper motor sets topmost bit of byte value in port 7 when it's

ready.

 Robot - port 9 (3 bytes)

The robot is controlled by sending data to i/o port 9.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

The first byte (port 9) is a command register. set values to
this port to make robot do something. supported values:

decimal

value

binary

value
action

0 00000000 do nothing.

1 00000001 move forward.

2 00000010 turn left.

3 00000011 turn right.

4 00000100

examine. examines an object in front using sensor.

when robot completes the task, result is set to

data register and bit #0 of status register is

set to 1.

5 00000101 switch on a lamp.

6 00000110 switch off a lamp.

The second byte (port 10) is a data register. this register is

set after robot completes the examine command:

decimal value binary value meaning

255 11111111 wall

0 00000000 nothing

7 00000111 switched-on lamp

8 00001000 switched-off lamp

The third byte (port 11) is a status register. read values from
this port to determine the state of the robot. each bit has a

specific property:

bit

number
description

bit #0 zero when there is no new data in data register, one when

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

there is new data in data register.

bit #1
zero when robot is ready for next command, one when robot is

busy doing some task.

bit #2

zero when there is no error on last command execution, one

when there is an error on command execution (when robot

cannot complete the task: move, turn, examine, switch on/off

lamp).

example:

 MOV AL, 1 ; move forward.

 OUT 9, AL ;

 MOV AL, 3 ; turn right.

 OUT 9, AL ;

 MOV AL, 1 ; move forward.

 OUT 9, AL ;

 MOV AL, 2 ; turn left.

 OUT 9, AL ;

 MOV AL, 1 ; move forward.

 OUT 9, AL ;

keep in mind that robot is a mechanical creature and it takes
some time for it to complete a task. you should always check

bit#1 of status register before sending data to port 9,
otherwise the robot will reject your command and "busy!" will

be shown. see robot.asm in c:\emu8086\examples.

Creating Custom Robo-World Map

It is possible to change the default map for the robot using the
tool box.

if you click the robot button and place robot over existing robot

it will turn 90 degrees counter-clock-wise. to manually move
the robot just place it anywhere else on the map.

If you click lamp button and click switched-on lamp the lamp

will be switched-off, if lamp is already switched-off it will be
deleted. click over empty space will create a new switched-on

lamp.

Arquitectura de Computadoras 2011 – UTN FRMza – Ingeniería en Sistemas

Placing wall over existing wall deletes the wall.

Current version is limited to a single robot only. if you forget to

place a robot on the map it will be placed in some random

coordinates.

When robot device is closed the map is automatically saved
inside this file: c:\emu8086\devices\robot_map.dat

It is possible to have several maps by renaming and coping this
file before starting the robot device.

The right-click over the map brings up a popup menu that

allows to switch-on or switch-off all the lamps at once.

