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1. INTRODUCTION

Rabbit Semiconductor was formed expressly to design a a better microprocessor for usein
small and medium-scale controllers. The first product is the Rabbit 2000 microprocessor.
The Rabbit 2000 designers have had years of experience using Z80, Z180 and HD64180
microprocessors in small controllers. The Rabbit shares asimilar architecture and a high
degree of compatibility with these microprocessors, but it is avast improvement.

The Rabbit has been designed in close cooperation with Z-World, Inc., along-time manu-
facturer of low-cost single-board computers. Z-World's products are supported by an
innovative C-language development system (Dynamic C). Z-World is providing the soft-
ware development tools for the Rabbit.

The Rabbit 2000 is easy to use. Hardware and software interfaces are as uncluttered and
are as foolproof as possible. The Rabbit 2000 has outstanding computation speed for a
microprocessor with an 8-bit bus. Thisis because the Z80-derived instruction set is very
compact and the design of the memory interface allows maximum utilization of the mem-
ory bandwidth. The Rabbit races through instructions.

Traditional microprocessor hardware and software development is simplified for Rabbit
users. In-circuit emulators are not needed and will not be missed by the Rabbit devel oper.
Software development is accomplished by connecting a simple interface cable from aPC
serial port to the Rabbit-based target system.

1.1 Features and Specifications

e 100-pin PQFP package. Operating voltage 2.7 V to 5 V. Clock speed to 30 MHz. All
specifications are given for both industrial and commercial temperature and voltage
ranges. Rabbit microprocessors cost under $10 in moderate quantities.

» Industrial specifications are for a voltage variation of 10% and a temperature range
from —40°C to +85°C. Commercial specifications are for avoltage variation of 5% and
atemperature range from 0°C to 70°C.

» 1-megabyte code space allows C programs with up to 50,000+ lines of code. The
extended Z80-style instruction set is C-friendly, with short and fast instructions for
most common C operations.

» Four levels of interrupt priority make afast interrupt response practical for critical
applications. The maximum time to the first instruction of an interrupt routine is about
1 psat aclock speed of 25 MHz.
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Accessto |/O devicesis accomplished by using memory accessinstructionswith an 1/0O
prefix. Accessto 1/O devicesisthus faster and easier compared to processors with a
restricted 1/O instruction set.

The hardware design rules are simple. Up to six static memory chips (such asRAM and
flash EPROM) connect directly to the microprocessor with no glue logic. Even larger
amounts of memory can be handled by using parallel 1/0 lines as high-order address
lines. The Rabbit runs with no wait states at 24 MHz with a memory having an access
time of 70 ns. There are two clocks per memory access. Most 1/0 devices may be con-
nected without glue logic.

The memory cycleistwo clockslong. A clean memory and I/O cycle completely avoid
the possibility of tri-state fights. Peripheral 1/0 devices can usually be interfaced in a
glueless fashion using pins programmable as 1/O chip selects, 1/O read strobes or 1/0
write strobe pins. A built-in clock doubler allows ¥2-frequency crystals to be used to
reduce radiated emissions.

The Rabbit may be cold-booted viaa seria port or the parallel access slave port. This
means that flash program memory may be soldered in unprogrammed, and can be
reprogrammed at any time without any assumption of an existing program or BIOS. A
Rabbit that is slaved to a master processor can operate entirely with volatile RAM,
depending on the master for a cold program boot.

There are 40 parallel 1/0O lines (shared with serial ports). Some 1/O lines are timer syn-
chronized, which permits precisely timed edges and pulses to be generated under com-
bined hardware and software control.

There arefour serial ports. All four serial ports can operate asynchronously in avariety
of customary operating modes; two of the ports can also be operated synchronously to
interface with serial 1/0 devices. The baud rates can be very high—21/32 the clock
speed for asynchronous operation, and 1/6 the clock speed externally or 1/4 the clock
speed internally in synchronous mode. In asynchronous mode, the Rabbit, like the
Z180, supports sending flagged bytesto mark the start of amessage frame. The flagged
bytes have 9 data bits rather than 8 data bits; the extrabit islocated after the first 8 bits,
where the stop bit is normally located, and marks the start of a message frame.

A slave port allows the Rabbit to be used as an intelligent peripheral device slaved to a
master processor. The 8-bit lave port has six 8-bit registers, 3 for each direction of
communication. Independent strobes and interrupts are used to control the slave port in
both directions. Only a Rabbit and a RAM chip are needed to construct a complete
dlave system if the clock and reset are shared with the master processor

The built-in battery-backable time/date clock uses an external 32.768 kHz crystal. The
time/date clock can also be used to provide periodic interrupts every 488 us. Typica
battery current consumption is 25 pA with the suggested battery circuit. An alternative
circuit provides means for substantially reducing this current.

Numerous timers and counters (six all together) can be used to generate interrupts,
baud rate clocks, and timing for pulse generation.
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» The built-in main clock oscillator uses an external crystal or more usually a ceramic
resonator. Typical resonator frequencies are in the range of 1.8 MHz to 29.5 MHz.
Since precision timing is available from the separate 32.768 kHz oscillator, a low-cost
ceramic resonator with ¥z percent error is generally satisfactory. The clock can be dou-
bled or divided by 8 to modify speed and power dynamically. The 1/O clock, which
clocks the serial ports, is divided separately so as not to affect baud rates and timers
when the processor clock is divided or multiplied. For ultralow power operation, the
processor clock can be driven from the separate 32.768 kHz oscillator and the main
oscillator can be powered down. This allows the processor to operate at approximately
100 pA and still execute instructions at the rate of approximately 10,000 instructions
per second. Thisis apowerful alternative to sleep modes of operation used by other
processors. The current is approximately 65 mA at 25 MHz and 5V. The current is pro-
portional to voltage and clock speed—at 3.3 V and 7.68 MHz the current would be 13
mA, and at 1 MHz the current is reduced to less than 2 mA. Flash memory with auto-
matic power down (from AMD) should be used for operation at the lowest power.

» The excellent floating-point performance is dueto atightly coded library and powerful
processing capability. For example, a 25 MHz clock takes 14 usfor afloating add,
13 psfor amultiply, and 40 psfor a square root. In comparison, a 386EX processor
running with an 8-bit bus at 25 MHz and using Borland C is about 10 times slower.

* Thereisabuilt-in watchdog timer.

» The standard 10-pin programming port eliminates the need for in-circuit emulators. A
very simple 10 pin connector can be used to download and debug software using
Z-World's Dynamic C and asimple connection to a PC serial port. Theincremental cost
of the programming port is extremely small.
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Figure 1-1 shows a block diagram of the Rabbit.
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Figure 1-1. Block Diagram of the Rabbit Microprocessor
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1.2 Summary of Rabbit Advantages

The glueless architecture makesit is easy to design the hardware system.
There are alot of seria ports and they can communicate very fast.
Precision pulse and edge generation is a standard feature.

Interrupts can have multiple priorities.

Processor speed and power consumption are under program control.

The ultralow power mode can perform computations and execute logical tests sincethe
processor continues to execute, abeit at 32 kHz.

The Rabbit may be used to create an intelligent peripheral or a slave processor. For
example, protocol stacks can be off loaded to a Rabbit slave. The master can be any
processor.

The Rabbit can be cold booted so unprogrammed flash memory can be soldered in
place.

You can write serious software, be it 1,000 or 50,000 lines of C code. The tools are
there and they are low in cost.

If you know the Z80 or Z180, you know most of the Rabbit.

A simple 10-pin programming interface replaces in-circuit emulators and PROM pro-
grammers.

The battery backable time/date clock is included.
The standard Rabbit chip is made to industrial temperature and voltage specifications.
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2. RABBIT DESIGN FEATURES

The Rabbit isan evolutionary design. The instruction set and the register layout is that of
the Z80 and Z180. Theinstruction set has been augmented by a substantial number of new
instructions. Some obsolete or redundant Z180 instructions have been dropped to make
available efficient 1-byte opcodes for important new instructions. (see“ Differences Rabbit
vs. Z80/Z180 Instructions’ on page 183.) The advantage of this evolutionary approach is
that users familiar with the Z80 or Z180 can immediately understand the Rabbit. Existing
source code can be assembled or compiled for the Rabbit with minimal changes.

Changing technology has made some features of the Z80/2180 family obsolete, and these
have been dropped. For example, the Rabbit has no special support for dynamic RAM but
it has extensive support for static memory. This is because the price of static memory has
decreased to the point that it has become the preferred choice for medium-scale embedded
systems. The Rabbit has no support for DMA (direct memory access) because most of the
uses for which DMA istraditionally used do not apply to embedded systems, or they can
be accomplished better in other ways, such as fast interrupt routines, external state
machines or dlave processors.

Our experience in writing C compilers has revea ed the shortcomings of the Z80 instruc-
tion set for executing the C language. The main problem isthe lack of instructionsfor han-
dling 16-bit words and for accessing data at acomputed address, especialy when the stack
contains that data. New instructions correct these problems.

Another problem with many 8-bit processorsistheir slow execution and alack of number-
crunching ability. Good floating-point arithmetic is an important productivity featurein
smaller systems. It is easy to solve many programming problemsif an adequate floating-
point capability is available. The Rabbit’s improved instruction set provides fast floating-
point and fast integer math capabilities.

The Rabbit supports four levels of interrupt priorities. Thisis an important feature that
allows the effective use of super fast interrupt routines for real-time tasks.

2.1 The Rabbit 8-bit Processor vs. 16-bit and 32-bit Processors

The Rabbit isan 8-bit processor with an 8-bit external data bus and an 8-bit internal data
bus. Because the Rabbit makes the most of its external 8-bit bus and because it has a com-
pact instruction set, its performance is as good as many 16-bit processors. Thus the Rabbit
can handle many 16-bit operations.

User’s Manual 7



We hesitate to compare the Rabbit to 32-bit processors, but there are undoubtedly occa-
sions where the user can use a Rabbit instead of a 32-bit processor and save a vast amount
of money. Many Rabbit instructions are 1 byte long. In contrast, the minimum instruction
length on most 32-bit RISC processorsis 32 hits.

2.2 Overview of On-Chip Peripherals

The on-chip peripherals were chosen based on our experience as to what types of periph-
eral devices are most useful in small embedded systems. The major on-chip peripherals
are the serial ports, system clock, time/date oscillator, paralel 1/0, slave port, and timers.
These are described below.

2.2.1 Serial Ports

There are four serial ports designated ports A, B, C, and D. All four seria ports can oper-
ate in an asynchronous mode up to the baud rate of the system clock divided by 32. The
asynchronous ports can handle 7 or 8 data bits. A 9th bit address scheme, where an addi-
tional bit is sent to mark the first byte of a message, is also supported. The software can
tell when the last byte of a message has finished transmitting from the output shift register
- correcting an important defect of the Z180. Thisisimportant for RS-485 communication
because the line driver cannot have the direction of transmission reversed until the last bit
has been sent. In many UARTS, including those on the Z180, it is difficult to generate an
interrupt after the last bit is sent. Parity bits and multiple stop bits are not supported
directly by the Rabbit, but can be accomplished with appropriate driving software.

Serial ports A and B can be operated alternately in the clocked serial mode. In thismode, a
clock line synchronously clocks the datain or out. Either device of the two devices com-
muni cating can supply the clock. When the Rabbit providesthe clock, the baud rate can be
up to 1/4 of the system clock frequency, or more than 7,375,000 bps for a29.5 MHz clock
speed.

Serial port A has special features. It can be used to cold boot the system after reset. Serial
port A isthe normal port that isused for software development under Dynamic C.

2.2.2 System Clock

The main oscillator uses an external crystal with afrequency typically in the range from
1.8 MHz to 29.5 MHz. The processor clock is derived from the oscillator output by either
doubling the frequency, using the frequency directly, or dividing the frequency by 8. The
processor clock can also be driven by the 32.768 kHz oscillator for very low power opera-
tion, in which case the main oscillator can be shut down under software control.
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Table 2-1 provides estimates of the operating power for selected clock speeds.

Table 2-1. Operating Power Estimates at Selected Clock Speeds

Clock Speed| Voltage | Current | Power ||Clock Speed| Voltage | Current | Power
(MHz) V) (mA) (mW) (MH2) V) (mA) (mW)
25.0 5.0 80 400 6.0 25 10 25
125 5.0 40 200 3.0 25 5 12
125 33 26 87 15 25 25 6
6.0 33 13 42 0.032 25 0.054 0.135

2.2.3 Time/Date Oscillator

The 32.768 kHz oscillator drives an external 32.768 kHz quartz crystal. The 32.768 kHz
clock is used to drive a battery-backable (there is a separate power pin) internal 48-bit
counter that serves as areal-time clock (RTC). The counter can be set and read by soft-
ware and isintended for keeping the date and time. There are enough bits to keep the date
for more than 100 years. The 32.768 kHz oscillator is also used to drive the watchdog
timer and to generate the baud clock for serial port A during the cold boot sequence.

2.2.4 Parallel I/O

There are 40 parallel input/output lines divided among five 8-bit ports designated A
through E. Most of the port lines have aternate functions, such as serial dataor chip select
strobes. Parallel ports D and E have the capability of timer-synchronized outputs. The out-
put registers are cascaded.

Load Data

Load Clock

Port Output

Timer Clock j

Figure 2-1. Cascaded Output Registers for Parallel Ports D and E

Storesto the port are loaded in the first-level register. That register in turn istransferred to
the output register on a selected timer signal. The timer signal can also cause an interrupt

that can be used to set up the next bit to be output on the next timer pulse. This feature can
be used to generate precisely controlled pul ses whose edges are positioned with high accu-
racy in time. Applications include communications signaling, pul se width modulation and
driving stepper motors.

2.2.5 Slave Port

The dlave port is designed to alow the Rabbit to be a slave to another processor, which
could be another Rabbit. The port is shared with parallel port A and isabidirectional data
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port. The master can read any of three registers selected viatwo select lines that form the
register address and a read strobe that causes the register contents to be output by the port.
These same registers can be written as 1/0 registers by the Rabbit slave. Three additional
registers transmit data in the opposite direction. They are written by the master by means
of the two select lines and a write strobe.

Figure 2-2 shows the data paths in the slave port.

|r -~ Rabbit !
|
| - >

Master | .

Processor | Input Register CPU

Output Registers

|
|
| - - - —
|

Figure 2-2. Slave-Port Data Paths

The dave Rabbit can read the same registers as 1/0 registers. When incoming data bits are
written into one of the registers, status bits indicate which registers have been written, and
an optional interrupt can be programmed to take place when the write occurs. When the
slave writes to one of the registers carrying data bits outward, an attention line is enabled
so that the master can detect the data change and be interrupted if desired. One line tells
the master that the slave has read all the incoming data. Another line tells the master that
new outgoing data bits are available and have not yet been read by the master. The slave
port can be used to direct the master to perform tasks using a variety of communication
protocols over the Slave port.

2.2.6 Timers

The Rabbit has several timer systems. The periodic interrupt is driven by the 32.768 kHz
oscillator divided by 16, giving an interrupt every 488 usif enabled. Thisisintended to be
used as a general-purpose clock interrupt. Timer A consists of five 8-bit countdown and
reload registers that can be cascaded up to two levels deep. Each countdown register can
be set to divide by any number between 1 and 256. The output of four of thetimersisused
to provide baud clocks for the serial ports. Any of these registers can also cause interrupts
and clock the timer-synchronized parallel output ports. Timer B consists of a 10-bit
counter that can be read but not written. There are two 10-bit match registers and compar-
ators. If the match register matches the counter, a pulse is output. Thus the timer can be
programmed to output a pulse at a predetermined count in the future. This pulse can be
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used to clock the timer-synchronized parallel-port output registers as well as cause an

interrupt. Timer B is convenient for creating an event at a precise time in the future under

program control.

Figure 2-3 illustrates the Rabbit timers.

[ ] _ T
- » | A1 |
A4 —
perclk/2 ||
( A5 ——
Timer A System A6
A7 ——
T 10-bit counter
compare
/8 J 10 bits —p P [ ]
Timer B System match reg Timer B1
next match
A Timer_B2
match reg
next match

Figure 2-3. Rabbit Timers

2.3 Design Standards

The same functionality can be accomplished in many ways using the Rabbit. By publish-

ing design standards, or standard ways to accomplish common objectives, software and
hardware support become easier.
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2.3.1 Programming Port

Rabbit Semiconductor publishes a specification for a standard programming port (see
Appendix A.1, “The Rabbit Programming Port”) and provides a converter cable that may
be used to connect a PC serial port to the standard programming interface. The interfaceis
implemented using a 10-pin connector with two rows of pinson 2 mm centers. The port is
connected to Rabbit serial port A, to the startup mode pins on the Rabbit, to the Rabbit
reset pin, and to a programmable output pin that is used to signal the PC that attention is
needed. With proper precautions in design and software, it is possible to use serial port A
as both a programming port and as a user-defined serial port, although thiswill not be nec-
essary in most cases.

Rabbit Semiconductor supports the use of the standard programming port and the standard
programming cable as a diagnostic and setup port to diagnosis problems or set up systems
inthefield.

2.3.2 Standard BIOS

Rabbit Semiconductor provides a standard BIOS for the Rabbit. The BIOS is a software
program that manages startup and shutdown, and provides basic services for software run-
ning on the Rabbit.

2.4 Dynamic C Support for the Rabbit

Dynamic C is Z-World'sinteractive C language development system. Dynamic C runson
a PC under Windows 95/98 or Windows NT. It provides a combined compiler, editor and
debugger. The usual method for debugging atarget system based on the Rabbit isto
implement the 10-pin programming connector that connects to the PC serial port viaa
standard converter cable. Dynamic C libraries contain highly perfected software to control
the Rabbit. These includes drivers, utility and math routines and the debugging BIOS for
Dynamic C.

In addition, the internationally-known real-time operating system, uC/OS-11, has been
ported to the Rabbit and is available starting with Dynamic C Premier v. 6.50.
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3. DETAILS ON RABBIT
MICROPROCESSOR FEATURES

3.1 Processor Registers

The Rabbit’s registers are nearly identical to those of the Z180 or the Z80. The figure
below showstheregister layout. The XPC and IP registers are new. The EIR register isthe
same asthe Z80 | register, and is used to point to a table of interrupt vectors for the exter-
nally generated interrupts. The IR register occupies the same logical position in the
instruction set as the Z80 R register, but its function isto point to an interrupt vector table
for internally generated interrupts.

A | ¢ | [ ox ]
LH | L] \gen | 1Y |
b | E | s | e |
8 [ ¢ | [ e |
=5
A | B
‘ H ‘ L ‘ A- 8-bit accumulator
‘ D’ ‘ E ‘ F - flags register
‘ - ‘ o ‘ HL- 16-bit accumul ator
IX, 1Y - Index registers/alt accum’s
Alternate Registers SP - stack pointer
PC- program counter
Is|z|x|x|x|v][x|c] XPC - extension of program counter
F - flag register layout IIR - internal interrupt register
S-sign, Z-zero, V-overflow, C-carry ElIR-external interrupt register
Bits marked "X" are read/write. |P - interrupt priority register

Figure 3-1. Rabbit Registers
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The Rabbit (and the Z80/2180) processor has two accumulators—the A register serves as
an 8-hit accumulator for 8-bit operations such as ADD or and. The 16-bit register HL regis-
ter serves as an accumulator for 16-bit operations such as ADD HL, DE, which adds the 16-
bit register DE to the 16-bit accumulator HL. For many operations I X or I'Y can substitute
for HL as accumulators.

Theregister marked F isthe flags register or statusregister. It holds a number of flags that
provide information about the last operation performed. The flag register cannot be
accessed directly except by using the POP AF and PUSH AF instructions. Normally the
flags are tested by conditional jump instructions. The flags are set to mark the results of
arithmetic and logic operations according to rules that are specified for each instruction.
There are four unused read/write bitsin the flag register that are available to the user via
the PUSH AF and POP AF instructions. These bits should be used with caution since new-
generation Rabbit processors could use these bits for new purposes.

Theregisters|X, Y and HL can also serve asindex registers. They point to memory
addresses from which data bits are fetched or stored. Although the Rabbit can address a
megabyte or more of memory, the index registers can only directly address 64K of mem-
ory (except for certain extended addressing LDP instructions). The addressing rangeis
expanded by means of the memory mapping hardware (see “Memory Mapping” on

page 15) and by special instructions. For most embedded applications, 64K of data mem-
ory (as opposed to code memory) is sufficient. The Rabbit can efficiently handle a mega-
byte of code space.

The register SP points to the stack that is used for subroutine and interrupt linkage as well
as general-purpose storage.

A feature of the Rabbit (and the Z80/2180) is the alternate register set. Two special
instructions swap the alternate registers with the regular registers. Theinstruction ex af ,af’
exchanges the contents of AF with AF . The instruction EXX exchanges HL, DE, and BC
withHL’, DE’, and BC’'. Communication between the regular and alternate register set in
the original Z80 architecture was difficult because the exchange instructions provided the
only means of communication between the regular and alternate register sets. The Rabbit
has new instructions that greatly improve communication between the regular and alter-
nate register set. This effectively doubles the number of registersthat are easily available
for the programmer’s use. It is not intended that the alternate register set be used to pro-
vide a separate set of registers for an interrupt routine, and Dynamic C does not support
this usage because it uses both registers sets freely.

The IP register isthe interrupt priority register. It contains four 2-bit fields that hold a his-
tory of the processor’sinterrupt priority. The Rabbit supports four levels of processor pri-
ority, something that exists only in avery restricted form in the Z80 or Z180.
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3.2 Memory Mapping

Except for a handful of special instructions (see Section 18.5, “16-bit Load and Store 20-
bit Address’), the Rabbit instructions directly address a 64K data memory space. This
means that the address fields in the instructions are 16 bits long and that the registers that
may be used as pointers to memory addresses (index registers (1 X, 1 Y), program counter
and stack pointer (SP)) are also 16 bits long.

Because Rabbit instructions use 16-bit addresses, the instructions are shorter and can exe-
cute much faster than, for example, 32-bit addresses. The executable code isalso very
compact. Even though these 16-bit addresses are a valuabl e asset, they do create some
complications because a memory-mapping unit is needed in order to access areasonable
amount of memory for modern C programs.

The Rabbit memory-mapping unit is similar to, but more powerful than, the Z180 mem-
ory-mapping unit. Figure 3-2 illustrates the relationship among the major components
related to addressing memory.

Memory Memory Memor
_ Chips
16 | unit 20
bits bits 20 bits plus control

Figure 3-2. Addressing Memory Components

The memory-mapping unit receives 16-bit addresses as input and outputs 20-bit addresses.
The processor (except for certain LDP instructions) sees only a 16-bit address space. That
is, it sees 65536 distinctly addressable bytes that its instructions can manipulate. Three
segment registers are used to map this 16-bit space into a 1-megabyte space. The 16-bit
space isdivided into four separate zones. Each zone, except the first or root zone, has a
segment register that is added to the 16-bit address within the zone to create a 20-bit
address. The segment register has eight bits and those eight bits are added to the upper
four bits of the 16-bit address, creating a 20-bit address. Thus, each separate zone in the
16-bit memory becomes a window to a segment of memory in the 20-bit address space.
The relative size of the four segments in the 16-bit space is controlled by the SEGSIZE
register. Thisis an 8-bit register that contains two 4-bit registers. This controls the bound-
ary between the first and the second segment and the boundary between the second and
the third segment. The location of the two movable segment boundariesis determined by a
4-bit value that specifies the upper four bits of the address where the boundary is located.
These relationships areillustrated in Figure 3-3.
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Figure 3-3. Example of Memory Mapping Operation

The names given to the segmentsin the figure are evocative of the common uses for each
segment. The root segment is mapped to the base of flash memory and contains the star-

tup code aswell as other code that may happen to be stored there. The data segment usage
varies depending on the overall strategy for setting up memory. It may be an extension of
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the root segment or it may contain data variables. The stack segment is normally 4K long
and it holds the system stack. The XPC segment is normally used to execute code that is
not stored in the root segment or the data segment. Special instructions support executing
code that is visible in the X PC segment.

The memory interface unit receives the 20-bit addresses generated by the memory-map-
ping unit. The memory interface unit conditionally modifies address lines A16, A18 and
A19. The other address lines of the 20-bit address are passed unconditionally. The mem-
ory interface unit provides control signals for external memory chips. These interface sig-
nals are chip selects (/CS0, /CS1, /CS2), output enables (/OEO, /OEL), and write enables
(AWEQ, /WEL1). These signals correspond to the normal control lines found on static mem-
ory chips (chip select or /CS, output enable or /OE, and write enable or /WE). In order to
generate these memory control signals, the 20-bit address space is divided into four quad-
rants of 256K each. A bank control register for each quadrant determines which of the
chip selects and which pair of output enables, and write enables (if any) is enabled when a
memory read or write to that quadrant takes place. For example, if a512K x 8 flash mem-
ory isto be accessed in thefirst 512K of the 20-bit address space, then /CS0, /WEOQ, /OEQ
could be enabled in both quadrants.

Figure 3-4 shows a memory interface unit.

Axxin—from processor
Axx—out from memory _
control unit Al9in A19
. . _ix A18, Al9invertible
Addre$llne§ not shown A18in A18 by quadrant
are passed directly. ?
Al19in A19in’ /CSO
memory
A18in /CS1 ;:i(r)]r;rol
/CS2
Optional A19inversion (r:rg)%rﬂ%rly L /OEO
L /WEO
Read/Write JOE1
Synchronization WE1

Figure 3-4. Memory Interface Unit
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3.2.1 Extended Code Space

A crucial element of the Rabbit memory mapping scheme is the ability to execute pro-
grams containing up to a megabyte of code in an efficient manner. This ability isabsent in
apure 16-bit address processor, and it is poorly supported by the Z180 through its memory
mapping unit. On paged processors, such asthe 8086, this capability isprovided by paging
the code space so that the code is stored in many separate pages. On the 8086 the page size
iIs64K, so all the code within agiven pageis accessible using 16-bit addressing for jumps,
calls and returns. When paging is used, a separate register (CS on the 8086) is used to
determine where the active page currently resides in the total memory space. Special
instructions make it possible to jump, call or return from one page to another. These spe-
cia instructions are called long calls, long jumps and long returns to distinguish them
from the same operations that only operate on 16-bit variables.

The Rabbit also uses a paging scheme to expand the code space beyond the reach of a 16-
bit address. The Rabbit paging scheme uses the concept of a sliding page, which is 8K
long. Thisisthe XPC segment. The 8-bit XPC register serves as a page register to specify
the part of memory where the window points. When a program is executed in the XPC
segment, normal 16-bit jumps, calls and returns are used for most jumps within the win-
dow. Normal 16-bit jJumps, calls and returns may also be used to access code in the other
three segmentsin the 16-bit address space. If atransfer of control to code outside the win-
dow isrequired, then along jump, long call or long return is used. These instructions mod-
ify both the program counter (PC) and the X PC register, causing the XPC window to point
to adifferent part of memory where the target of the long jump, call or return islocated.
The XPC segment isalways 8K long. The granularity with which the XPC segment can be
positioned in memory is 4K. Because the window can be sid by one-half of itssize, itis
possible to compile continuously without unused gaps in memory.

Asthe compiler generates code resident in the XPC window, the window is slid down by
4K when the code goes beyond FO00. This is accomplished by along jump that reposi-
tionsthewindow 4K lower. Thisisillustrated by Figure 3-5. The compiler is not presented
with asharp boundary at the end of the page because the window does not run out of space
when code passes FOOO unless 4K more of code is added before the window is slid down.
All code compiled for the XPC window has a 24-bit address consisting of the 8-bit XPC
and the 16-bit address. Short jumps and calls can be used, provided that the source and tar-
get instructions both have the same XPC address. Generally this means that each instruc-
tion belongs to awindow that is approximately 4K long and has a 16-bit address between
EO000+n and FOOO+m, where n and m are on the order of afew dozen bytes, but can be up
to 4096 bytesin length. Since the window is limited to no more than 8K, the compiler is
unable to compile asingle expression that requires more than 8K or so of code space. This
isnot apractical consideration since expressions longer than afew hundred bytes are in
the nature of stunts rather than practical programs.

Program code can reside in the root segment or the X PC segment. Program code may also
be resident in the data segment. Code can be executed in the stack segment, but thisis usu-
aly restricted to special situations. Code in the root, meaning any of the segments other
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than the XPC segment, can call other code in the root using short jJumps and calls. Code in
the XPC segment can also call code in the root using short jumps and calls. However, a
long call must be used when code in the XPC segment is called. Functions located in the
root have an efficiency advantage because along call and along return require 32 clocks
to execute, but a short call and a short return require only 20 clocks to execute. The differ-
enceissmall, but significant for short subroutines.

Compiler noticesthat  Compiler inserts
code has passed FO00. long jump in code.

10000
XPC segment
EQ0O0 A3 4 F000
Stack t
Dogp | Xeck segment |- A 7
I short \
] cals
ol EOO00
XPC=N XPC=N+1
PC=F000+K PC=E000+K +4
Root segment Illustration of sliding XPC window

Figure 3-5. Use of XPC Segment

3.2.2 Extending Data Memory

In the normal memory model, the data space must share a 64K space with root code, the
stack, and the XPC window. Typically, thisleaves a potential data space of 40K or less.
The XPC requires 8K, the stack requires 4K, and most systemswill require at least 12K of
root code. This amount of data space is more than sufficient for most embedded applica-
tions.

One approach to getting more data space is to place datain RAM or in flash memory that
Is not mapped into the 64K space, and then access this data using function callsor in
assembly language using the LDP instructions that can access memory using a 20-bit
address. Thisis satisfactory for accessing simple data structures or buffers.

Another approach to extending data memory isto use the stack segment to access data,
placing the stack in the data segment so as to free up the stack segment. This approach
works well for a software system that uses data groupings that are self-contained and are
accessed one at atime rather than randomly between al the groupings. An example would
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be the software structures associated with a TCP/I P communication protocol connection
where the same code accesses the data structures associated with each connection in a pat-
tern determined by the traffic on each connection.

The advantage of this approach is that normal C data access techniques, such as 16-bit
pointers, may be used. The stack segment register has to be modified to bring the data
structure into view in the stack segment before operations are performed on a particular
data structure. Since the stack has to be moved into the data area, it isimportant that the
number of stacks required be kept to a minimum when using the stack segment to view
data. Of course, tasksthat don’t need to see the data structures can have their stack located
in the stack segment. Another possibility isto have a data structure and a stack located
together in the stack segment, and to use a different stack segment for different tasks, each
task having its own data area and stack bound to it.

These approaches are shown in Figure 3-6 below.

Stack Seg-
ment used as Stack Seg-
" datawindow ment used for
stack
F— — Data Segment
used as data
b= window
Stacksin data
Data segment Data
(RAM) (RAM)
Root Segment .~ | |
mapped to
Root RAM hasboth
Code root code and Root
(flash) data. Code
(RAM)
Using Stack Segment Using Data Segment for
for a Data Window a Data Window (Code must
be copied to RAM on startup.)

Figure 3-6. Schemes for Data Memory Windows

A third approach isto place the data and root codein RAM in the root segment, freeing the
data segment to be a window to extended memory. This requires copying the root code to
RAM at startup time. Copying root code to RAM is not necessarily that burdensome since
the amount of RAM required can be quite small, say 12K for example.
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The XPC segment at the top of the memory can also be used as a data segment by pro-
grams that are compiled into root memory. Thisis handy for small programs that need to
access alot of data.

3.2.3 Practical Memory Considerations

The simplest Rabbit configurations have one flash memory chip interfaced using /CS0 and
one RAM memory chip interfaced using /CS1. Typical Rabbit-based systems use 256K of
flash and 128 K of RAM, but smaller or larger memories may be used.

Although the Rabbit can support code size approaching a megabyte, it is anticipated that
the great majority of applications will use less then 250K of code, equivalent to approxi-
mately 10,000-20,000 C statements. This reflects both the compact nature of Rabbit code
and the typical size of embedded applications.

Directly accessible C variables are limited to approximately 44K of memory, split
between data stored in flash and RAM. Thiswill be more than adequate for many embed-
ded applications. Some applications may require large data arrays or tables that will
require additional data memory. For this purpose Dynamic C supports a type of extended
data memory that allows the use of additional data memory, even extending far beyond a
megabyte.

Requirements for stack memory depend on the type of application and particularly
whether preemptive multitasking is used. If preemptive multitasking is used, then each
task requires its own stack. Since the stack has its own segment in 16-bit address space, it
IS easy to use available RAM memory to support alarge number of stacks. When a pre-
emptive change of context takes place, the STACKSEG register can be changed to map
the stack segment to the portion of RAM memory that contains the stack associated with
the new task that is to be run. Normally the stack segment is 4K, whichistypically large
enough to provide space for several (typically four) stacks. It is possible to enlarge the
stack segment if stacks larger than 4K are needed. If only one stack is needed, theniitis
possible to eliminate the stack segment entirely and place the single stack in the data seg-
ment. This option is attractive for systemswith only 32K of RAM that don’t need multiple
stacks.

3.3 Instruction Set Outline

“Load Immediate Data To a Register” on page 23

“Load or Store Data from or to a Constant Address’ on page 23

“Load or Store Data Using an Index Register” on page 23

“Register to Register Move’ on page 24

“Register Exchanges’ on page 25

“Push and Pop Instructions’ on page 25

“16-bit Arithmetic and Logical Ops’ on page 26

“Input/Output Instructions’ on page 28—these include afix for abug that manifestsitself
if an I/O instruction (prefix | A or | OE) isfollowed by one of 12 single-byte op codes that
use HL as an index register.
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In the discussion that follows, we give afew example instructionsin each general category
and contrast the Z80/ Z180 with the Rabbit. For a detailed description of every instruction,
see Chapter 18, “Rabbit Instructions’

The Rabbit executes instructionsin fewer clocks then the Z80 or Z180. The 2180 usually
requires a minimum of four clocks for 1-byte opcodes or three clocks for each byte for
multi-byte op codes. In addition, three clocks are required for each data byte read or writ-
ten. Many instructions in the Z180 require a substantial number of additional clocks. The
Rabbit usually requires two clocks for each byte of the op code and for each data byte
read. Three clocks are needed for each data byte written. One additional clock isrequired
if amemory address needs to be computed or an index register is used for addressing.
Only afew instructions don’t follow this pattern. An example ismul, a16 x 16 bit signed
two's complement multiply. mul is a 1-byte op code, but requires 12 clocks to execute.
Compared to the Z180, not only does the Rabbit require fewer clocks, but in atypical situ-
ation it has a higher clock speed and its instructions are more powerful.

The most important instruction set improvements in the Rabbit over the Z180 are in the
following areas.

» Fetching and storing data, especially 16-bit words, relative to the stack pointer or the
index registers| X, 1'Y, and HL.

» 16-bit arithmetic and logical operations, including 16-bit and’s, or’s, shifts and 16-bit
multiply.

« Communication between the regular and alternate registers and between the index reg-
isters and the regular registersis greatly facilitated by new instructions. In the Z180 the
aternate register set is difficult to use, while in the Rabbit it is well integrated with the
regular register set.

» Long cdls, long returns and long jumps facilitate the use of 1M of code space. This
removes the need in the Z180 to utilize inefficient memory banking schemes for larger
programs that exceed 64K of code.

 Input/output instructions are now accomplished by normal memory access instructions
prefixed by an op code byte to indicate access to an /0O space. There are two |/O
spaces, internal peripherals and external 1/0 devices.

Some Z80 and Z180 instructions have been deleted and are not supported by the Rabbit
(see Chapter 19, “Differences Rabbit vs. Z80/2180 Instructions’). Most of the deleted
instructions are obsolete or are little-used instructions that can be emulated by several
Rabbit instructions. It was necessary to remove some instructions to free up 1-byte op
codes needed to implement new instructions efficiently. The instructions were not re-
implemented as 2-byte op codes so as not to waste on-chip resources on unimportant
instructions. Except for the instruction EX (SP), HL, the original Z180 binary encoding of
op codes isretained for al Z180 instructions that are retained.
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3.3.1 Load Immediate Data To a Register

A constant that follows the op code in the instruction stream can generally be loaded to
any register, except PC, AF, IPand F. (Load to the PC isajump instruction.) Thisincludes
the alternate registers on the Rabbit, but not on the Z180. Some example instructions
appear below.

LD A 3

LD HL, 456

LD BC , 3567 ; not possible on Z180

LD H , 4Ah ; not possible on Z180

LD 1 X, 1234

LD C, 54
Byte loads require four clocks, word loads require six clocks. Loadsto IX, I'Y or the alter-
nate registers generally require two extra clocks because the op code has a 1-byte prefix.

3.3.2 Load or Store Data from or to a Constant Address

LD A, (m) ; loads 8 bits from address mm

LD A, (mm) ; not possible on Z180

LD (m), A

LD HL, (mm) ; load 16 bits fromthe address specified by m
LD HU',(m) ; to alternate register, not possible Z180

LD (m), HL

Similar 16-bit loads and stores exist for DE, BC, SP, IX and Y.

It is possible to load data to the alternate registers, but it is not possible to store the datain
the aternate register directly to memory.

LD A, (mm) ; all oned
** |D(m),D ; **** not a |legal instruction!
** |D(m),DE ; **** not a |legal instruction!

3.3.3 Load or Store Data Using an Index Register

Anindex register isa 16-bit register, usualy 1X, 1Y, SP or HL, that is used for the address
of abyte or word to be fetched from or stored to memory. Sometimes an 8-bit offset is

added to the address either asasigned or unsigned number. The 8-bit offset isabytein the
instruction word. BC and DE can serve as index registers only for the special cases below.

LD A (BO)
LD A, (BO)
LD (BO), A
LD A (DE)
LD A, (DE)
LD (DE), A
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Other 8-bit loads and stores are the following.

LD r, (HL) ; ris any of 7 registers A, B, C, D, E, H L
LD g, (HL) ; same but alternate register destination
LD (HL),r ; r is any of the 7 registers above

; or an inmedi ate data byte
** |D(HL),g ;**** not a legal instruction!

LD r, (I X+d) ; r is any of 7 registers, dis -128 to +127 offset
LD g, (I X+d) ; same but alternate destination

LD (I X+d),r ; r is any of 7 registers or an i mmediate data byte
LD (1Y+d),r ; I X or 1Y can have offset d

The following are 16-bit indexed loads and stores. None of these instructions exists on the
Z180 or Z80. The only source for astoreisHL. The only destination for aload isHL or HL'.

LD HL, ( SP+d) ; dis an offset fromO to 255.

; 16-bits are fetched to HL or HL’
LD (SP+d), HL ; correspondi ng store
LD HL, (HL+d) ;. dis an offset from-128 to +127,

; uses original HL value for addressing
;I =(HL+d), h=(HL+d+1)

LD HL’, (HL+d)

LD (HL+d), HL

LD (I X+d), HL ; store HL at address pointed to
; by I X plus -128 to +127 offset

LD HL, (I X+d)

LD HL', (1 X+d)

LD (1Y+d), HL ; store HL at address pointed to
; by 1Y plus -128 to +127 offset

LD HL, (I Y+d)

LD HL', (1 Y+d)
3.3.4 Register to Register Move

Any of the 8-hit registers, A, B, C, D, E, H, and L, can be moved to any other 8-bit regis-
ter, for example:

LD A c
LD d, b
LD e, |

The alternate 8-bit registers can be a destination, for example:

LD a',c
LD d,b

These instructions are unique to the Rabbit and require 2 bytes and four clocks because of
the required prefix byte. InstructionssuchasLD A, d’ orLD d’, e’ arenot allowed.
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Several 16-bit register-to-register move instructions are available. Except as noted, these
instructions all require 2 bytes and four clocks. The instructions are listed below.

LD dd’',BC ; where dd' is any of HL', DE, BC (2 bytes, 4 clocks)
LD dd’, DE

LD I X, HL

LD 1Y, HL

LD HL, I'Y

LD HL, I X

LD SP, HL ; 1-byte, 2 clocks

LD SP, I X

LD SP, 1Y

Other 16-bit register moves can be constructed by using 2-byte moves.
3.3.5 Register Exchanges

Exchange instructions are very powerful because two (or more) moves are accomplished
with one ingtruction. The following register exchange instructions are implemented.

EX af, af’ ; exchange af with af
EXX ; exchange HL, DE, BCwith H.', DE, BC
EX DE, HL ; exchange DE and HL

The following instructions are unique to the Rabbit.

EX DE , HL ;1 byte, 2 clocks
EX DE, HLU’ ; 2 bytes, 4 clocks
EX DE, H.' ; 2 bytes, 4 clocks

The following special instructions (Rabbit and Z180/Z80) exchange the 16-bit word on
the top of the stack with the HL, the IX, or thelY register. These three instructions are
each 2 bytes and 15 clocks.

EX (SP), HL
EX (SP), I X
EX (SP), 1Y

3.3.6 Push and Pop Instructions

There are instructions to push and pop the 16-bit registers AF, HL, DC, BC, IX, and Y.
Theregisters AF, HL', DE’, and BC’ can be popped. Popping the alternate registersis
exclusive to the Rabbit, and is not allowed on the Z80 / Z180.

Examples

POP HL
PUSH BC
PUSH | X
PUSH af
POP DE
POP DE
POP HL’
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3.3.7 16-bit Arithmetic and Logical Ops

The HL register isthe primary 16-bit accumulator. X and 1Y can serve as alternate accu-
mulators for many 16-bit operations. The Z180/Z80 has aweak set of 16-bit operations,
and as a practical matter the programmer has to resort to combinations of 8-bit operations
in order to perform many 16-bit operations. The Rabbit has many new op codes for 16-bit
operations, removing some of this weakness.

The basic Z80/2180 16-bit arithmetic instructions are

ADD HL, w ; where w is HL, DE, BC, SP

ADC HL, ww ; ADD and ADD carry

SBC HL, ww ; sub and sub carry

I NC ww ; increnent the register (wthout affecting flags)

In the above op codes, I1X or I'Y can be substituted for HL. The ADD and ADC instructions
can be used to left-shift HL with the carry. An aternate destination prefix (ALTD) may be
used on the above instructions. This causes the result and its flags to be stored in the corre-
sponding aternate register. If the ALTD flag is used when I X or 1Y isthe destination regis-
ter, then only the flags are stored in the alternate flag register.

The following new instructions have been added for the Rabbit.

:Shifts

RR HL ; rotate HL right with carry, 1 byte, 2 clocks
; note use ADC HL,HL for left rotate, or add HL, HL if
; no carry in is needed.

RR DE ; 1 byte, 2 clocks

RL DE ; rotate DE left with carry, 1-byte, 2 clocks

RR IX ; rotate I X right with carry, 2 bytes, 4 clocks

RR 1Y ; rotate Y right with carry

; Logi cal Qperations

AND HL,DE ; 1 byte, 2 clocks

AND | X, DE ; 2 bytes, 4 clocks

AND 1Y, DE

OR HL, DE ;1 byte, 2 clocks

OR | X, DE ; 2 bytes, 4 clocks

CR 1Y, DE

The BOOL instruction is a specia instruction designed to help test the HL register. BOOL
setsHL to thevalue 1 if HL isnon zero, otherwise, if HL is zero its valueis not changed.
The flags are set according to the result. BOOL can also operate on I X and IY.

BOOL HL ; set HL to 1 if non- zero, set flags to match HL
BOOL | X

BOOL 1Y

ALTD BOOL HL ; set HI' an f' according to HL

ALTD BOOL 1Y ; nmodify 1Y and set f° with flags of result
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The SBC instruction can be used in conjunction with the BOOL instruction for performing
comparisions. The SBC instruction subtracts one register from another and also subtracts
the carry bit. The carry out isinverted compared to the carry that would be expected if the
number subtracted was negated and added. The following examplesillustrate the use of
the SBC and BOOL instructions.

; Test if HL>=DE - HL and DE unsi gned nunbers 0-65535
OR a ; clear carry
SBC HL,DE ; if C==0 then HL>=DE else if C==1 then HL<DE

; convert the carry bit into a boolean variable in HL

SBC HL,HL ; sets HL==0 if C==0, sets HL==0ffffh if C==1
BOOL HL ; HL==1 if C was set, otherw se HL==0

; convert not carry bit into boolean variable in HL
SBC HL,HL ; HL==0 if C==0 else HL==ffff if C=1
I NC HL ; HL==1 if C==0 else HL==0 if C==1
; note carry flag set, but zero / sign flags reversed
In order to compare signed numbers using the SBC instruction, the programmer can map
the numbers into an equivalent set of unsigned numbers by inverting the sign bit of each
number before performing the comparison. This maps the most negative number 08000h
to the smallest unsigned number 0000h, and the most positive signed number 07FFFh to
the largest unsigned number OFFFFh. Once the numbers have been converted, the compa-
rision can be done asfor unsigned numbers. This procedureisfaster than using ajump tree
that requires testing the sign and overflow bits.
example - test for HL>=DE where HL and DE are signed nunbers

invert sign bits on both
ADD HL,HL ; shift left

CCF ; invert carry
RR HL ; rotate right
RL DE

CCF

RR DE ; invert DE sign

SBC HL,DE ; no carry if HL>=DE
; generate bool ean variable true if HL>=DE
SBC HL,HL ; zero if no carry else -1
I NC HL ; 1if no carry, else zero
BOOL ; use this instruction to set flags if needed

The SBC instruction can also be used to perform a sign extension.

; extend sign of | to HL

LD A I

rla ; sign to carry

SBC A a ; aisall 1's if sign negative
LD h, a ; sign extended

The multiply instruction performs a signed multiply that generates a 32-bit signed result.

MUL ; signed multiply of BC and DE
result in HL.:BC - 1 byte, 12 cl ocks
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If a16-bit by 16-bit multiply with a 16-bit result is performed, then only the low part of
the 32-bit result (BC) is used. This (counter intuitively) is the correct answer whether the
terms are signed or unsigned integers. The following method can be used to perform a 16
x 16 bit multiply of two unsigned integers and get an unsigned 32-bit result. This usesthe
fact that if a negative number is multiplied the sign causes the other multiplier to be sub-
tracted from the product. The method shown below adds double the number subtracted so
that the effect is reversed and the sign bit is treated as a positive bit that causes an addition.

LD BC, nl
LD HL' ,BC ; save BCin HL’
LD DE, n2
LD A b ; save sign of BC
MJL ; formproduct in HL: BC
R a ; test sign of BC nultiplier
JR p, x1 ; if plus continue
ADD HL, DE ; adjust for negative sign in BC
x1:
RL DE ; test sign of DE
JR nc,x2 ; if not negative
; subtract other multiplier fromHL
EX DE, HL’
ADD HL, DE
X2:

; final unsigned 32 bit result in HL:BC

This method can be modified to multiply asigned number by an unsigned number. In that
case only the unsigned number hasto be tested to seeif the signison, and in that case the
signed number is added to the upper part of the product.

The multiply instruction can also be used to perform left or right shifts. A left shift of n
positions can be accomplished by multiplying by the unsigned number 2**n. This works
for n# 15, and it doesn’'t matter if the numbers are signed or unsigned. In order to do a
right shift by n (0 < n < 16), the number should be multiplied by the unsigned number
2"\(16 —n), and the upper part of the product taken. If the number is signed, then asigned
by unsigned multiply must be performed. If the number is unsigned or isto be treated as
unsigned for alogical right shift, then an unsigned by unsigned multiply must be per-
formed. The problem can be simplified by excluding the case where the multiplier is
2’15,

3.3.8 Input/Output Instructions

The Rabbit uses an entirely different scheme for accessing input/output devices. Any
memory access instruction may be prefixed by one of two prefixes, one for internal 1/0
space and one for external 1/O space. When so prefixed, the memory instruction is turned
into an /O instruction that accesses that 1/0 space at the 1/0O address specified by the 16-
bit memory address used. For example
A LD A (85h) ; loads A register with contents
; of internal I/Oregister at |ocation 85h.

LD 1Y, 4000h
IOE LD HL, (I Y+5) ; get word fromexternal 1/O |ocation 4005h
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By using the prefix approach, all the 16-bit memory access instructions are available for
reading and writing /O locations. The memory mapping is bypassed when /O operations
are executed.

I/O writesto the internal 1/0 registers require only two clocks, rather than the minimum of
three clocks required for writes to memory or external 1/O devices.

In certain conditions where an I/O operation is followed by a special one-byte instruction,
abug in the original Rabbit 2000 chip causes an /O access to take place instead of amem-
ory access operation. The problem was corrected in revisions A—C of the Rabbit 2000.
(Refer to Appendix B for further information to determine which version of the Rabbit
2000 chip you are using.)

The bug is manifested if an 1/0O instruction (prefix | O or | OE) isfollowed by one of 12
single-byte op codes that use HL as an index register. The 12 instructions are:

ADC A, (HL) SUB (HL)
ADD A, (HL) XOR (HL)
AND (HL) DEC (HL)
CP (HL) INC (HL)
OR (HL) LD r, (HL)
SBC A, (HL) LD (HL),r

wherer , an 8-byteregister, isoneof A, B, C,D, E, H, or L.

The only combination that is very likely to occur in user written assembly language pro-
gramsisan /O instruction followed by LD (HL), r.

The nature of the failure is that the memory address trand ation does not take place and so
the appropriate memory chip select will not be enabled for the second instruction. In the
case of external 1/O operations where the 1/0O strobes on Port E may be enabled, an 1/0
“chip select” (1/0O strobe) will take place instead of a memory chip select. If one of the
above instructions follows an internal 1/0 operation and the memory access takes placein
the base region where address trand ation does not take place, the memory operation will
take place properly because the appropriate memory chip select is enabled for interna 1/0
operations.

The bug may be easily avoided by placing a NOP between the 1/0 instruction and a follow-
ing instruction from the above list.

Rabbit users are unlikely to encounter this problem because the sequence of instructions
that exhibit the bug is never generated by the Dynamic C compiler or in any of the stan-
dard libraries.

Beginning with the 6.57 release, the Dynamic C compiler and assembler will correct for
this anomaly by inserting NOPs where necessary in generated code.
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3.4 How to Do It in Assembly Language—Tips and Tricks
3.4.1 Zero HL in 4 Clocks

BOOL HL ; 2 clocks, clears carry, HL. is 1 or O
RR HL ; 2 clocks, 4 total - get rid of possible 1

This sequence requires four clocks compared to six clocksfor LD HL, 0.
3.4.2 Exchanges Not Directly Implemented
HL<->HL’ - eight clocks

EX DE , HL ; 2 clocks
EX DE' , HL’ ;4 clocks
EX DE , HL : 2 clocks, 8 total

DE<->DE’ - six clocks

EX DE ,HL ; 2 clocks
EX DE, HL ; 2 clocks
EX DE ,HL ; 2 clocks, 6 total

BC<->BC' - 12 clocks

EX DE , HL
EX DE, HL’

2 cl ocks
4
EX DE, HL ;2
;2
2

EXX
EX DE, HL

Move between IX, 1Y and DE, DE’
IX/1Y->DE / DE->IX/IY

X, I X --> DE

EX DE, HL

LD HL IX/1Y [/ LDIX 1Y, H

EX DE, HL ; 8 clocks total
; DE-->1IX 1Y

EX DE, HL

LD I X/ 1Y, HL

EX DE, HL ; 8 clocks total

3.4.3 Manipulation of Boolean Variables

Logica operationsinvolving HL when HL isalogical variable with avalue of 1 or 0—
thisisimportant for the C language where the least bit of a 16-bit integer is used to repre-
sent alogical result

Logical not operator—invert bit 0 of HL in four clocks (also worksfor | X, I Y in eight
clocks)

DEC HL ; 1 goes to zero, zero goes to -1
BOOL HL ; -1 to 1, zero to zero. 4 clocks total

Logical xor operator—xor HL, DE when HL/DE are 1 or O.

ADD HL, DE
RES 1,1 ;6 clocks total, clear bit 1 result of if 1+1=2
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3.4.4 Comparisons of Integers

Unsigned integers may be compared by testing the zero and carry flags after a subtract
operation. The zero flag is set if the numbers are equal. With the SBC instruction the carry
cleared is set if the number subtracted is less than or equal to the number it is subtracted
from. 8-bit unsigned integers span the range 0-255. 16-bit unsigned integers span the
range 0—65535.

R a ; clear carry
SBC HL, DE ; HL=A and DE=B
A>=B IC
A<B C

=B Z
A>B IC&!Z

A<=B CvVv Z

If Alisin HL and B isin DE these operations can be performed as follows assuming that
the object isto set HL to 1 or O depending on whether the compare is true or false.
; conpute HL<DE

; unsigned integers
;. EXDE,HL ; uncoment for DE<HL

OR a ; clear carry
SBC HL, DE ; Cset if HL<DE
SBC HL, HL ; HL-HL-C -- -1 if carry set

BOOL HL ; set to 1 if carry, else zero
; else result ==
;unsigned integers
conpute HL>=DE or DE>=HL - check for !C
EX DE, HL ; uncomment for DE<=HL

OR a ; clear carry

SBC HL, DE ; 1Cif HL>=DE

SBC HL, HL ; HL-HL-C - zero if no carry, -1if C

I NC HL ;14 / 16 clocks total -if C after first SBC result 1,
; else O

; 0if C, 1if IC

conpute HL==DE

R a ; clear carry

SBC HL,DE ; zero is equal
BOOL HL ; force to zero, 1
DEC HL ; invert logic

BOOL HL ; 12 clocks total -logical not, 1 for inputs equal
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Some simplifications are possible if one of the unsigned numbers being compared isa
constant. Note that the carry has areverse sense from SBC. In the following examples, the
pseudo-code in the form LD DE, ( 65535- B) does not indicate aload of DE with the
address pointed to by 65535- B, but ssmply indicates the difference between 65535 and
the 16-bit unsigned integer B.

test for HL>B B is constant
LD DE, (65535- B)

ADD HL, DE ; carry set if HL>B
SBC HL, HL ; HL-HL-C - result -1 if carry set, else zero
BOOL HL ;14 total clocks - true if HL>B

HL>=B B is constant not zero
LD DE, (65536- B)
ADD HL, DE
SBC HL, HL
BOOL HL ;14 cl ocks

HL>=B and B is zero
LD HL, 1 ;6 cl ocks

HL<B B is a constant, not zero (if B==0 al ways fal se)
LD DE, (65536- B)

ADD HL,DE ; not carry if HL<B
SBC HL, HL ; -1 if carry, else 0O

I NC HL ; 14 clocks --0 if carry, else 1 if no carry

HL <= B B is constant not zero
LD DE, (65535- B)

ADD HL, DE ; ~Cif HL<=B
CCF ;. Cif true
SBC HL, HL cif C-1else O

I NC HL ; 16 clocks -- 1 if true, else O

HL. <= B Bis zero - true if HL==0
BOOL HL presult in HL

HL==B and B is a constant not zero
LD DE, (65536- B)

ADD HL,DE ; zero if equal
BOOL HL

I NC HL

RES 1,1 ;16 cl ocks

HL==B and B==0

BOOL HL

I NC HL

RES 1,1 ;8 cl ocks
For signed integers the conventional method to look at the zero flag, the minus flag and
the overflow flag. Signed 8-bit integers span the range —128 to +127 (80h to 7Fh). Signed
16-bit integers span the range —32768 to + 32767 (8000h to 7FFFh). The sign and zero
flag tell which isthe larger number after the subtraction unless the overflow is set, in
which case the sign flag needs to be inverted in the logic, that is, it iswrong.
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ASB (1S&!V&!Z) v (S&V

AB (S &!V) v (IS&V &'2

A==B

A>=B

A<=B
Another method of doing signed compareisto first map the signed integers onto unsigned
integers by inverting bit 15. Thisis shown in Figure 3-7 on page 33. Once the mapping
has been performed by inverting bit 15 on both numbers, the comparisions can be done as
if the numbers were unsigned integers. This avoids having to construct ajump tree to test

the overflow and sign flags. An example is shown below.
; test HL>5 for signed integers

LD DE, 65535- (5+08000h) ; 5 nmapped to unsigned integers
LD BC, 08000h

ADD HL,BC ; invert high bit
ADD HL, DE ; 16 clocks to here
; carry now set if HL>5 - opportunity to jump on carry
SUBC HL,HL ; HL-HL-C cif Conresult is -1, else zero
BOOL HL ; 22 clocks total - true if HL>5 el se fal se
0111... 1111...
000... — | 100...
111... 011...
100... 000...

Figure 3-7. Mapping Signed Integers to Unsigned Integers by Inverting Bit 15

3.4.5 Atomic Moves from Memory to I/O Space

To avoid disabling interrupts while copying a shadow register to its target register, it is
desirable to have an atomic move from memory to /O space. This can be done using LDD
or LDI instructions.

LD HL, sh_PDDDR ; point to shadow register
LD DE, PDDDR ; set DEto point to I/Oreg
SET 5, (HL) ; set bit 5 of shadow register
; use ldd instruction for atom c transfer
Id 1dd ; (io DE)<-(HL) HL--, DE--

When the LDD instruction is prefixed with an 1/0 prefix, the destination becomes the I/O
address specified by DE. The decrementing of HL and DE isa side effect. If the repeating
instructions LDI R and LDDR are used, interrupts can take place between successive itera-
tions. Word stores to 1/0 space can be used to set two 1/O registers at adjacent addresses
with a single noninterruptabl e instruction.
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3.5 Interrupt Structure

When an interrupt occurs on the Rabbit, the return addressis pushed on the stack, and con-
trol istransferred to the address of the interrupt service routine. The address of the inter-
rupt service routine has two parts. the upper byte of the address comes from a special
register and the lower byte isfixed by hardware for each interrupt, as shown in Table 7-10.
There are separate registers for internal interrupts (11R) and external interrupts (EIR) to
specify the high byte of the interrupt service routine address. These registers are accessed
by special instructions.

LD A IR

LDIIRA

LD A EIR

LD EIR A
Interrupts are initiated by hardware devices or by certain 1-byte instructions called reset
instructions.

RST 10

RST 18

RST 20

RST 28

RST 38
The RST instructions are similar to those on the Z80 and Z180, but certain ones have been
removed from the instruction set (00, 08, 30). The RST interrupts are not inhibited regard-
less of the processor priority. The user is advised to exercise caution when using these
instructions as they are mostly reserved for the use of Dynamic C for debugging. Unlike
the Z80 or Z180, the IR register contributes the upper byte of the service routine address
for RST interrupts.

Since interrupt routines do not affect the XPC, interrupt routines must be located in the
root code space. However, they can jump to the extended code space after saving the XPC
on the stack.

3.5.1 Interrupt Priority

The Z80 and Z180 have two levels of interrupt priority: maskable and nonmaskable. The
nonmaskabl e interrupt cannot be disabled and has afixed interrupt service routine address
of 66h. The Rabbit, in contrast, hasthree levels of interrupt priority and four priority levels
at which the processor can operate. If an interrupt is requested, and the priority of the
interrupt is higher than that of the processor, the interrupt will take place after the execu-
tion of the current instruction is complete (except for privileged instructions).

Multiple interrupt priorities have been established to make it feasible for the embedded
systems programmer to have extremely fast interrupts available. Interrupt latency refersto
the time required for an interrupt to take place after it has been requested. Generally, inter-
rupts of the same priority are disabled when an interrupt service routine is entered. Some-
times interrupts must stay disabled until the interrupt service routine is completed, other
times the interrupts can be re-enabled once the interrupt service routine has at least dis-
abled its own cause of interrupt. In any case, if several interrupt routines are operating at
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the same priority, thisintroduces interrupt latency while the next routine is waiting for the
previous routine to allow more interrupts to take place. If a number of devices have inter-
rupt service routines, and all interrupts are of the same priority, then pending interrupts
can not take place until at least the interrupt service routine in progressis finished, or at
least until it changes the interrupt priority. Asarule of thumb, Z-World usually suggests
that 100 us be alowed for interrupt latency on Z180-based controllers. This can result if,
for example, there are five active interrupt routines, and each turns off the interrupts for at
most 20 ps.

The intention in the Rabbit is that most interrupting devices will use priority 1 level inter-
rupts. Devices that need extremely fast response to interrupts will use priority level 2 or 3
interrupts. Since code that runs at priority level O or 1 never disableslevel 2 and level 3
interrupts, these interrupts will take place within about 20 clocks, the length of the longest
instruction or longest sensible sequence of privileged instructions followed by an unprivi-
leged instruction. It isimportant that the user be careful not to overdisable interruptsin
critical code sections. The processor priority should not be raised above level 1 except in
carefully considered situations.

The effect of the processor priority on interruptsis shown in Table 3-2. The priority of the
interrupt is usually established by bitsin an I/O control register associated with the hard-
ware that creates the interrupt. The 8-bit interrupt register (IP) holds the processor priority
in the least significant 2 bits. When an interrupt takes place, the IP register is shifted left 2
positions and the lower 2 bits are set to equal the priority of the interrupt that just took
place. This meansthat an interrupt service request (ISR) can only be interrupted by an
interrupt of higher priority (unless the priority is explicitly set lower by the programmer).
The IP register serves as a4-word stack of 2-bit words to save and restore interrupt priori-
ties. It can be shifted right, restoring the previous priority by aspecial instruction (I PRES).
Since only the current processor priority and 3 previous priorities can be saved in the inter-
rupt register, instructions are also provided to PUSHand POP | P using the regular stack. A
new priority can be “pushed” into the IP register with special instructions (I PSET 0,

| PSET 1,1 PSET 2,1 PSET 3).

Table 3-2. Effect of Processor Priorities on Interrupts

Processor
o Effect on Interrupts
Priority
0 All interrupts, priority 1,2 and 3 take place after
execution of current non privileged instruction.

1 Only interrupts of priority 2 and 3 take place.
2 Only interrupts of priority 3 take place.
3 All interrupt are suppressed (except RST instruction).

User’s Manual 35



3.5.2 Multiple External Interrupting Devices

The Rabbit has two distinct external interrupt request lines. If there are more than two
external causes of interrupts, then these lines must be shared between multiple devices.
Theinterrupt lineis edge sensitive, meaning that it requests an interrupt only when arising
or falling edge, whichever is specified in the setup registers, takes place. The state of the
interrupt line(s) can always be read by reading parallel port E since they share pins with
parallel port E.

If several lines are to share interrupts with the same port, the individual interrupt requests
would normally be or’ ed together so that any device can cause an interrupt. If severd
devices are requesting an interrupt at the same time, only one interrupt results because
there will be only one transition of the interrupt request line. To resolve the situation and
make sure that the separate interrupt routines for the different devices are caled, a good
method isto have ainterrupt dispatcher in software that is aided by providing separate
attention request lines for each device. The attention request lines are basically the inter-
rupt request lines for the separate devices before they are or’ ed together. The interrupt dis-
patcher calls the interrupt routines for all devices requesting interruptsin priority order so
that all interrupts are serviced.

3.5.3 Privileged Instructions, Critical Sections and Semaphores

Normally an interrupt happens at the end of the instruction currently executing. However,
if the instruction executing is privileged, the interrupt cannot take place at the end of the
instruction and is deferred until anon privileged instruction is executed, usualy the next
instruction. Privileged instructions are provided as a handy way of making a certain oper-
ation atomic because there would be a software problem if an interrupt took place after the
instruction. Turning off the interrupts explicitly may be too time consuming or not possi-
ble because the purpose of the privileged instruction is to manipulate the interrupt con-
trols. For additional information on privileged instructions, see Section 18.19, “Privileged
Instructions”

The privileged instructions to load the stack are listed below.

LD SP, HL
LD SP, I'Y
LD SP, I X

The following instructions to load SP are privileged because they are frequently followed
by an instruction to change the stack segment register. If an interrupt occurs between these
two instructions and the following instruction, the stack will be ill-defined.

LD SP, HL
IO LD sseg, a

The privileged instructions to manipulate the IP register are listed below.

| PSET 0O ; shift 1P left and set priority 00 in bits 1,0

| PSET 1

| PSET 2

| PSET 3

| PRES ; rotate IPright 2 bits, restoring previous priority
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RETI ; pops I P fromstack and then pops return address
POP | P ; pop I P register from stack

3.5.4 Critical Sections

Certain library routines may need to disable interrupts during a critical section of code.
Generally these routines are only legal to call if the processor priority iseither Oor 1. A
priority higher than thisimplies custom hand-coded assembly routines that do not call
general-purpose libraries. The following code can be used to disable priority 1 interrupts.

| PSET 1 ; save previous priority and set priority to 1

....critical section...

IPRES ; restore previous priority
Thiscodeissafeif it isknown that the code in the critical section does not have an embed-
ded critical section. If this codeis nested, thereisthe danger of overflowing the | P register.
A different version that can be nested is the following.

PUSH | P

| PSET 1 ; save previous priority and set priority to 1

....critical section...

POP | P ; restore previous priority

The following instructions are also privileged.

LD A xpc
LD xpc, a
BIT B, (HL)

3.5.5 Semaphores Using Bit B,(HL)

Thebit B, (HL) instructionisprivileged to allow the construction of a semaphore by the
following code.

BIT B, (HL) ; test a bit in the byte at (HL)

SET B, (HL) ; make sure bit set, does not affect flag

; if zero flag set the semaphore bel ongs to us;

; otherw se someone else has it
A semaphore is used to gain control of aresource that can only belong to one task or pro-
gram at atime. Thisisdone by testing a bit to seeif it ison, in which case someone elseis
using the resource, otherwise setting the bit to indicate ownership of the resource. No
interrupt can be allowed between the test of the bit and the setting of the bit as this might
allow two different program to both think they own the resource.

3.5.6 Computed Long Calls and Jumps

Theinstruction to set the XPC is privileged to so that a computed long call or jump can be
made. Thiswould be done by the following sequence.

LD xpc, a

JP (H)
In this case, A hasthe new XPC, and HL hasthe new PC. This code should normally be
executed in the root segment so as not to pull the memory out from under the JP (HL)
instruction.
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A call to a computed address can be performed by the following code.

; A=xpc, | Y=address
LD A, newxpc
LD 1Y, newaddr ess
LCALL DOCALL ; call utility routine in the root

The DOCALL routine

DOCALL:
LD xpc, a i SET xpc
JP (1Y) ; go to the routine
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4. RABBIT CAPABILITIES

This section describes the various capabilities of the Rabbit that may not be obvious from
the technical description.

4.1 Precisely Timed Output Pulses

The Rabbit can output precise pulses under software control. The effect of interrupt latency
Is avoided because the interrupt always prepares a future pulse edge that is clocked into
the output registers on the next clock. Thisis shown in Figure 4-1.

LT 1T T Timer Output
A B

C Parallel Port Output

b b

Latency

Parallel Port Output

I nterrupt

) - -
routine sets

Timer Output

Setup Register

Figure 4-1. Timed Output Pulses

The timer output in Figure 4-1 is periodic. Aslong as the interrupt routine can be com-
pleted during one timer period, an arbitrary pattern of synchronous pulses can be output
from the parallé port.

The interrupt latency depends on the priority of the interrupt and the amount of time that
other interrupt routines of the same or higher priority inhibit interrupts. The first instruc-
tion of the interrupt routine will start executing within 30 clocks of the interrupt request
for the highest priority interrupt routine. Thisincludes 19 clocksfor the longest instruction
to complete execution and 10 clocksfor the interrupt to execute. Pushing registersrequires
10-12 clocks per 16-bit register. Popping registers requires 7-9 clocks. Return from inter-
rupt requires 7 clocks. If three registers are saved and restored, and 20 instructions averag-
ing 5 clocks are executed, an entire interrupt routine will require about 200 clocks, or 10
uswith a20 MHz clock. Given this timing, the following capabilities become possible.
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Pulse width modul ated output—The minimum pulsewidth is 10 ps. If therepetition rateis
10 ms, then a new pulse with 1000 different widths can be generated at the rate of 100
times per second.

Asynchronous communications serial output—A synchronous output data can be gener-
ated with anew pulse every 10 ps. This corresponds to a baud rate of 100,000 bps.

Asynchronous communications serial input—To capture asynchronous serial input, the
input must be polled faster than the baud rate, aminimum of three times faster, with five
times being better. If five times polling is used, then asynchronous input at 20,000 bps
could be received.

Generating pulseswith precise timing relationships—T he rel ationship between two events
can be controlled to within 10 psto 20 us.

Using atimer to generate a periodic clock allows events to be controlled to a precision of
approximately 10 us. However, if Timer B is used to control the output registers, a preci-
sion approximately 100 times better can be achieved. Thisisbecause Timer B has a match
register that can be programmed to generate a pulse at a specified future time. The match
register has two cascaded registers, the match register and the next match register. The
match register isloaded with the contents of the next match register when apulseis gener-
ated. This allows events to be very close together, one count of Timer B. Timer B can be
clocked by syscl k/2 divided by anumber in the range of 1-256. Timer B can count asfast
as 10 MHz with a20 MHz system clock, allowing events to be separated by aslittle as 100
ns. Timer B and the match registers have 10 bits.

Using Timer B, output pulses can be positioned to an accuracy of cl k/2. Timer B can also
be used to capture the time at which an external event takes place in conjunction with the
external interrupt line. The interrupt line can be programmed to interrupt on either rising,
falling or both edges. To capture the time of the edge, the interrupt routine can read the
Timer B counter. The execution time of the interrupt routine up to the point where the
timer isread can be subtracted from the timer value. If no other interrupt is of the same or
higher priority, then the uncertainty in the position of the edge is reduced to the variable
time of the interrupt latency, or about one-half the execution time of the longest instruc-
tion. This uncertainty is approximately 10 clocks, or 0.5 pusfor a20 MHz clock. This
enables pulse width measurements for pulses of any length, with a precision of about 1 us.
If multiple pulses need to be measured simultaneously, then the precision will be reduced,
but this reduction can be minimized by careful programming.
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4.1.1 Pulse Width Modulation to Reduce Relay Power

Typically relays need far less current to hold them closed than is needed to initially close
them. For example, if the driver is switched to a 75% duty cycle using pulse width modu-
lation after theinitial period when therelay armature is picked, the holding current will be
approximately 75% of the full duty-cycle current and the power consumption will be
about 56% as great.

The pulse width modulation rate may be from 5 kHz to 20 kHz. If aperiodic interrupt is
established that interrupts every 50 ps, then a 50% duty cycle could be set up for a 100 ps
period. A 25%, 50% or 75% duty cycle could operate on a 200 ps period. A 250 us period
would allow duty cycles of 20%, 40%, 60% or 80%. The code for such an interrupt routine
might appear as follows.

push af ;10

push hl

push de

Id hl, (ptr) ; 11 get pointer to location in array
Id a, (maskand) ; 9 get mask

and a, (hl) ; 5 get current output

Id e, a ;2

I d a, (maskor) ;9

or a,e ;2

ioi Id (port),a ; 13 store in port

inc hi ; 2 point to next

Id a, (hl) ; 5 check for end of array
or a,a ;2

jr nz,step2 ;2

Id hl,(beginptr); 11 reset hl to start of array
st ep2:

Id (ptr), hl ; 13 save hl

pop de 07

pop hl

pop af

reti ; 7 return frominterrupt

153 clocks total worst case - 7.5 us at 20 MHz

This routine would take approximately 15% of the processor’s compute time assuming
50 s between interrupts. This routine could be speeded up, but at the expense becoming
more complicated. Instead of "and" and "or" masks, a higher level routine could modify
the array directly, and the end of the array could be detected by testing a bit patternin HL.
The higher level routine would have to suppress the interrupt while changing the bit pat-
tern in the array, or otherwise prevent erratic outputs while the array is being changed. If
therelay emitsawhistle at the period of the modulation, the acoustic energy can be spread
out over the spectrum by periodically missing an "off" pulse, creating a phase shift of
180°. A faster routine that executes in two-thirds the time is shown below.

User’s Manual 41



push af ;10
push hl

Id hl,(ptr) ;11
Id a, (hl) )
ioi Id (port),a ; 13 output data
inc hl

Id a, Of h 14
and | ; see if hl at end of cycle
jr z,step2

Id (ptr),hl

pop hl

pop af

reti

st ep2:

Id a, (beginptr)
Id1,a

Id (ptr), hl ;13
pop hl 07
pop af

reti

;103 cl ocks total

4.2 Open-Drain Outputs Used for Key Scan

The parallel port D outputs can be individually programmed to be open drain. Thisis use-
ful for scanning a switch matrix, as shown in Figure 4-2. A row isdriven low, then the col-
umns are scanned for alow input line, which indicates akey is closed. Thisisrepeated for
each row. The advantage of using open-drain outputsisthat if two keys in the same col-
umn are depressed, there will not be a fight between a driver driving the line high and
another driver driving it low.
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Figure 4-2. Using Open-Drain Outputs for Key Scan
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4.3 Cold Boot

Most microprocessors start executing at a fixed address, often address zero, after areset or
power-on condition. The Rabbit has two mode pins (SMODEO, SMODE1—see Figure 5-
1). Thelogic state of these two pins determines the startup procedure after areset. If both
pins are grounded, then the Rabbit starts executing instructions at address zero. On reset,
address zero is defined to be the start of the memory connected to the memory control
lines /CSO, and /OEO. However, three other startup modes are available. These alternate
methods all involve accepting a data stream viaa communications port that is used to store
a boot program in aRAM memory, which in turn can be used to start any further second-
ary boot process, such as downloading a program over the same communications port.
(For a detailed description, see Section 7.10, “Bootstrap Operation.”)

Three communication channels may be used for the bootstrap, either serial port A in asyn-
chronous mode at 2400 bps, serial port A in synchronous mode with an external clock, or
the (paralel) slave port.

The cold-boot protocol accepts groups of three bytes that define an address and a data
byte. Each triplet causes awrite of the data byte to either memory or to internal 1/0 space.
The high bit of the addressis set to specify the 1/0 space, and thus writes are limited to the
first 32K of either space. The cold boot isterminated by a store to an addressin I/O space,
which causes execution to begin at address zero. Since any memory chip can be remapped
to address zero by storing in the 1/O space, RAM can be temporarily be mapped to zero to
avoid having to deal with the more complicated write protocol of flash memory, whichis
the usual default memory located at address zero.

The following are the advantages of the cold-boot capability.

» Flash memory can be soldered to the microprocessor board and programmed viaa
serial port or aparallel port. This avoids having to socket the part or program it with a
BIOS or boot program before soldering.

» Complete reprogramming of the flash memory can be accomplished in thefield. Thisis
particularly useful during software development when the development platform can
perform a complete reload of software regardless of the state of the existing softwarein
the processor. The standard programming cable for Dynamic C allows the devel opment
platform to reset and cold boot the target, a Rabbit-based microprocessor board.

 If the Rabbit is used as a dave processor, the master processor can cold boot it over via
the slave port. This means the slave can operate without any nonvolatile memory. Only
RAM isrequired.
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4.4 The Slave Port

The slave port allows a Rabbit to act as a slave to another processor, which can also be a
Rabbit. The slave has to have only a processor chip, aRAM chip, and clock and reset sig-
nalsthat can be supplied by the master. The master can cold boot and download a program
to the slave. The master does not have to be a Rabbit processor, but can be any type of pro-
cessor capable of reading and writing standard registers.

For adetailed description, see Chapter 13, “Rabbit Slave Port.”

The dlave processor’s slave port is connected to the master processor’s data bus. Commu-
nication between the master and the slave takes place via three registers, implemented in
the Rabbit, for each direction of communication, for atotal of six dataregisters. In addi-
tion, there isa dlave port status register that can be read by either the master or the slave
(see Figure 13-1). Two slave address lines are used by the master to select the register to
be read or written. Theregistersthat carry datafrom the master to the slave appear aswrite
registers to the master and as read registers to the slave. The registers that operate in the
opposite direction appear as read registers to the master and as write registers to the slave.
These registers appear as read-write registers on both sides, but are not true read-write reg-
isters since different data may be read from what is written. The master provides the clock
or strobe to store data in the three write registers under its control. The master also can do
awrite to the status register, which is used as a signaling device and does not actually
write to the status register. The three registers that the master can write appear as read reg-
isters to the slave Rabbit. The master provides an enable strobe to read the three read data
registers and the status register. These registers are write registers to the Rabbit.

Thefirst register or the three pairs of registersis special in that writing can interrupt the
other processor in the master-slave communications link. An output line from the slave is
asserted when the slave writes to slave register zero. This line can be used to interrupt the
master. Internal circuitsin the slave can be setup up to interrupt the slave when the master
writes to slave register zero.

The status register that is available to both sides keeps score on all the registers and reports
If apotential interrupt is requested by either side. The status register keeps track of the
"full-empty" status of each register. A register is considered full when one side of the link
writesto it. It becomes empty if the other sidereadsit. Inthisway either side cantest if the
other side has modified aregister or whether either side has even stored the same informa-
tion to aregister.

The master-slave communication link makes possible "set and forget” communication
protocols. Either side can issue acommand or request by storing datain some register and
then go about its business while the other side takes care of the request according to its
own time schedule. The other side can be alerted by an interrupt that takes place when a
store is made to register zero, or it can aert itself by a periodic poll of the status register.
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Of the three registers seen by each side for each direction of communication, the first reg-
ister, slave register zero, has a special function because an interrupt can only be generated
by awrite to this register, which then causes an interrupt to take place on the other side of
the link if the interrupt is enabled. One type of protocol isto store datafirst in registers 1
and 2, and then as the last step store to register 0. Then 24 bits of data will be available to
the interrupt routine on the other side of the link.

Bulk data transfers across the link can take place by an interrupt for each byte transferred,
similar to atypical serial port or UART. In this case, afull-duplex transfer can take place,
similar to what can be done with a UART. The overhead for such an interrupt-driven trans-
fer will be on the order of 100 clocks per byte transferred, assuming a 20-instruction inter-
rupt routine. (To keep the interrupt routine to 20 instructions, the interrupt routine needsto
be very focused as opposed to general purpose.) Several methods are available to cater to
afaster transfer with less computing overhead. There are enough registers to transfer two
bytes on each interrupt, thus nearly halving the overhead. If arendezvousis arranged
between the processors, data can be transferred at approximately 25 clocks per byte. Each
side pollsthe status register waiting for the other side to read/write a dataregister, which is
then written/read again by the other side.

4.4.1 Slave Rabbit As A Protocol UART

A prime application for the Rabbit used asa daveisto create a4-port UART that can also
handle the details of a communication protocol. The master sends and receives messages
over the dave port. Error correction, retransmission, etc., can be handled by the slave.
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5. PIN ASSIGNMENTS AND FUNCTIONS

5.1 Package Schematic and Pinout
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Figure 5-1. Package Outline and Pin Assignments
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5.2 Package Mechanical Dimensions
Figure 5-2 shows the mechanical dimensions of the Rabbit PQFP package.
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Low stand off:
0.00-0.25 mm

The same pin dimensions apply Hig%gt%ngooff:
along the x axis and the y axis. £9=0.50 mm

> <—0.80 £ 0.15 mm

Figure 5-2. Mechanical Dimensions Rabbit PQFP Package

Figure 5-3 shows the PC board land pattern for the Rabbit 100-pin PQFP. This land pat-
ternisRLP 711A, theregistered land pattern for the Rabbit 2000 chip as developed by the
Surface Mount Land Patterns Committee and specified in IPC-SM-782A, Surface Mount
Design and Land Pattern Sandard, |PC, Northbrook, IL, 1999.

48 Rabbit 2000 Microprocessor



24.71 mm (max.)

21.29 mm (min.) \

Al

15.29 mm (min.)

18.71 mm (max.)

S [81_]
L] 1
L] L1
] L]
L] L1
el E
gl E
o &
S
L] 1
L] L1
L] L1
0.65 mm 0.345-0.44
-+ ' s
JUUUUUOD Al 00U OO0
1 A4
| 18.85 mm |
I |
23.0 mm .
TOLERANCE AND SOLDER JOINT ANALYSIS
J: 0.27-0.53 mm Jyy: 0.22-0.55 mm Jg: 0-0.122 mm

—_—>

Zmax: 18.71 0r24.71 nlnl Gmin: 15.29 or 21.29 r'rlnl X: 0.44 mm‘
o g (max.)” |
Toe Fillet Heel Fillet Side Fillet

J: Solder fillet min/max (toe, heel, and side respectively)
L: Toe-to-toe distance across chip

S: Heel-to-heel distance across chip

T: Toe-to-heel distance on pin

W: Width of pin

Figure 5-3. PC Board Land Pattern for Rabbit 100-pin PQFP
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5.3 Rabbit Pin Descriptions

Table 5-1 lists all the pins on the device, along with their direction, function, and pin num-
ber on the package.

Table 5-1. Rabbit Pin Descriptions

Pin Group

Pin Name

Direction

Function

Pin Numbers

Hardware

CLK

Output

Peripheral clock output. Thissignal is
derived internally from the main system
oscillator as per cl k, and may be divided
by 8, doubled, or both, by programmable
internal circuitry. Thissignal is enabled
after reset. Under program control, this pin
can output the full internal clock frequency,
or 1/2 theinternal frequency, or it can be
used as a general-purpose output pin under
software control. See Table 7-3, “ Global
Output Control Register (GOCR = OEh).”

/IRESET

Input

Master reset.

37

XTALA1

Input

Quartz crystal for 32 kHz clock oscillator.
Linesto the crystal should be short and
shielded from crosstalk. If an externa
clock is used, this pin should be driven by
the external clock.

40

XTALA2

Output

Quartz crystal for 32 kHz crystal oscillator.
Do not connect if an external clock is used.

41

XTALB1

Input

Quartz crystal for main system oscillator.
Linesto the crystal should be short and
shielded from crosstalk. If an external
clock is used this pin should be driven by
the external clock.

XTALB2

Output

Quartz crystal for main system oscillator.
Do not connect if an external clock is used.

91

CPU Buses

AO0-A19

Output

Address bus.

7, 17-20, 61—
68, 70-75, 79

DO-D7

Bidirectional

Data bus.

9-16

Status/
Control

/WDTOUT

Output

WDT timeout—outputs a pulse when the
internal watchdog times out. May also be
used to output a 30 us pulse.

34

Status

STATUS

Output

Programmable for functions:

1. driven low on first opcode fetch cycle
2. driven low during interrupt
acknowledge cycle

3. to serve as a general-purpose output.
See Table 7-3, “Global Output Control
Register (GOCR = OEh)."”.

38
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Table 5-1. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

Status

SMODE1
SMODEO

Input

Startup mode select (SMODEL1 = pin 35,
SMODEQ = pin 36) to determine bootstrap
procedure.

(SMODEL1 = 0, SMODEQ = 0) start
executing at address zero.

(0,2) cold boot from dlave port.

(1,0) cold boot from clocked serial port A.
(1,2) cold boot from asynchronous serial
port A at 2400 bps.

The SMODE pins can be used as general
input pins once the cold boot is complete.

35-36 (1:0)

Chip
Selects

/ICSO

Output

Memory Chip Select 0—connects directly
to static memory chip select pin. Normally
this pin is used to select base flash memory
that holds the program.

/CS1

Output

Memory Chip Select 1—normally this pin
is connected directly to static RAM chip
select. /CS1 can be optionally forced
continuously low under software control, a
feature that aids in the use of battery-
backed RAM when the chip select must
pass through a controller that may have a
slow propagation time.

/CS2

Output

Memory Chip Select 2—connect to static
memory chip. Use this chip select last.

Output
Enables

/OEO

Output

Memory Output Enable 0—connect
directly to static memory chip.

/OE1

Output

Memory Output Enable 1—alternate
memory output enable allows chip selects
to be shared between two memory chips.

76

Write
Enables

/WEQ

Output

Memory Write Enable O0—connect directly
to static memory chip. This pin may be
disabled under software control to write
protect the chip.

69

/WE1

Output

Memory Write Enable 1—connect directly
to static memory chip. This pin may be
disabled under software control to write
protect the chip.

80

1/0 Control

/BUFEN

Output

I/0O Buffer Enable—this signal isdriven
low during an external 1/O cycle and may
be used to control 3-state enable on the bus
buffer. The purposeisto save power by not
driving the I/O address or datalines on
every buscycle.

33
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Table 5-1. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

1/0 Read
Strobe

/IORD

Output

I/O read strobe. Driven low on an external
1/0 read bus cycle. May be used to drive
glue logic concerned with 1/0O expansion,
such as the direction pin on a bidirectional
bus buffer. See also programmabl e strobes
in port E.

32

1/O Write
Strobe

/IOWR

Output

I/O write strobe. Driven low as awrite
strobe during external 1/0 write cycles. Is
enabled by the 1/0 bank control register.
See also programmable strobesin port E.

31

1/O Port A

PAO-PA7

Input/
Output

These 8 bits serve as general-purpose input
output or they serve as the data port for the
slave port. On reset these pins are set to
inputs and they float.

8188

I/O Port B

PBO-PB7

6 In/2 Out

I/0 Port B. When used asparallel 1/0, PB7
and PB6 are outputs only. PBO-PB5 are
inputs only.

PBO0 and PB1 can be outputs when set up as
the clock for the clocked serial ports. On
reset, the outputs are set to zero. If the
dave port is enabled, the following
alternate assignments apply:
PB7—/SLAVEATTN: slave requests
attention.

PB5, PB4—address lines (SA1, SAO0) for
daveregisters.

PB3—slave negative read strobe from
master.

PB2—slave negative write strobe from
master.

If serial port A isenabled in clocked mode,
then PB1 is the bidirectiona clock line. If
serial port B isenabled in clocked mode,
then PBO is the bidirectional clock line.

93-100

1/O Port C

PCO-PC7

41n/4 Out

1/O Port C. When used as a parallel port,
bits 1, 3, 5, 7 areinputs and bits 0, 2, 4, 6
areoutputs. Bits0, 2, 4, 6 can alternately be
selectively enabled to serve asthe seria
data output for serial portsD, C, B, A
respectively. Bits 1, 3, 5, 7 serve asthe
serial datainputs for serial portsD, C, B,
A. These inputs can also be read from the
parallel port register when they are being
used by the serial port UART.

51, 54-60
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Table 5-1. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

I/O Port D

PDO-PD7

Input/
Output/
output open
drain

1/0O Port D. Each bit may be individually
selected to be an input or output. Each
output may be selected to be high-low
drive or open drain. Outputs are buffered
by timer-synchronizable registers for
precision edge control. PD6 can be
programmed to be an optional serial output
for seria port A. PD4 can be programmed
to be an optional serial output for serial
port B. PD7 and PD5 can be used as
alternate serial inputs by serial ports A and
B, in which case these pins should be
programmed as inputs.

43-50

1/O Port E

PE7—PEO

Input/
Output

I/O Port E. Each bit may be individually
selected to be an input or output. Outputs
are buffered by timer-synchronizable
registers for precision edge control. Each
of the port lines can be individually
selected to be an /O control signal instead
of aparald I/Oline. Each of the 8
possible I/O control signalsis astrobe
energized on an external 1/0 cycleto 1/8th
of the 64K external 1/O space. Each strobe
can be programmed to be a chip select, a
write strobe, aread strobe or a combined
read and write strobe. Any port bit used as
an 1/O control strobe must be programmed
as an output bit. If theslave portis
enabled, PE7 is used as the slave register
chip select signal (negative active). PE7
should be programmed as an input for the
dave register chip select function to work.
If PE7 is programmed as an output and set
low, then the dlave register chip select will
always be activated. PEO and PE4 serve as
alternate inputs for externa interrupt O.
PE1 and PE5 serve as alternate inputs for
external interrupt 1. If PEOisenabled, then
PE1 must also be enabled and similarly for
PE4 and PE5. Theinterrupt istriggered in
software on fall, rising or both edges. If
both interrupts are enabled, they are or’ ed
together after edge detection has been
performed on each input individually. The
port bits must be set up as inputs for the to
use them as interrupt request inputs.

21-26, 29, 30
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Table 5-1. Rabbit Pin Descriptions (continued)

Pin Group | Pin Name Direction Function Pin Numbers
VBAT +3.0 V (battery backup), +3.3V or +5.0V |42
VDD +3.3Vor+5.0V 3, 28,53, 78, 92
Power
2,27, 39, 52,
VSS Ground 77. 89
Inout/ Clock for serial port A when operating in
CLKA P synchronous mode. Alternate assignment | 94
Output
for PB1.
Inout/ Clock for serial port B when operating in
CLKB P synchronous mode. Alternate assignment | 93
Output
for PBO.
Serial Ports | RXA, TXA, : Serial inputs and output for serial ports A—
RXB, TXB, |RX—input ’ !
D. These are dternate pin assignmentsfor | 51, 54-60
RXC, TXC, | TX—output arallel port C
RXD, TXD P port &
ARXA, - Alternate serial inputs and output for serial
ATXA, RX—input .
ARXB TX—outout ports A and B. These are alternate pin 43-46
' —OUIPUL | assignments for parallel port D, PD4-PD7.
ATXB
SDO-SD7  |Bidirectional | S2VePOrt databus. An alternate 81-88
assignment for parallel port A.
ISLAVEATTN—Slaveis requesting
{\ISLAV EATT Output attention from the master. An alternate pin | 100
assignment for parallel port B, hit 7.
Strobe used to read one of the dave
/SRD Input registers. An aternate pin assignment for | 96
parallel port B, hit 3.
Slave Port Strobe used to write aslave register. An
/ISWR Input alternate pin assignment for parallel port B, | 95
bit 2.
Address lines to address slave registers.
SAQ, SA1 Input An alternate pin assignment for parallel 97,98
port B, bits4 and 5.
Chip select for dave port, activelow. An
/SCS Input alternate pin assignment for parallel port E, | 21
bit 7.
54 Rabbit 2000 Microprocessor




Table 5-1. Rabbit Pin Descriptions (continued)

Pin Group | Pin Name

Direction

Function

Pin Numbers

N10,/11,
Nn2,N3,
N4, 115,
ne,n7z

1/0 Strobes

Outputs

1/O strobes. Each strobe uses 1/8th of the
I/0 space or 8K addresses. Each strobe can
be programmed as: chip select, read, write,
combined read or write. These are
alternate pin assignment for parallel port E,
bits 0—7. Each pin may beindividually re-
assigned from parallel port to strobe
functionality.

21-26, 29, 30

External
Interrupt O

INTOA,
INTOB

Inputs

These pins are sampled and an interrupt
request for external interrupt number O is
latched on a specified transition (pos, neg,
either). Thereisa separate latch for each
pin. May be enabled when thispinisset up
asinput for parallel port E. The value of
the pin may also be read via the parallel
port. UsesbitsO, 4 of the parallel port. If
parallel port is set up as output, the paralel
port output may be used to cause the
interrupt.

24,30

External
Interrupt 1

INT1A,
INT1B

Inputs

These pins are sampled and an interrupt
request for external interrupt number 1is
latched on a specified transition (pos, neg,
either). Thereis a separate latch for each
pin. May be enabled when thispinis set up
asinput for parallel port E. The value of the
pin may also be read viathe parallel port.
Useshits 1, 5 of the parallel port. If parallel
port is set up as output, the parallel port
output may be used to cause the interrupt.

23,29
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5.4 Bus Timing

The external bus has essentially the same timing for memory cycles or I/O cycles. A
memory cycle begins with the chip select and the address lines. One clock later, the out-
put enable is asserted for aread. The output data and the write enable are asserted for a
write.

T1 Tw T2
| |

|
|
<

| |
| L
I i Address (20 for memory, 16 for 1/0)
| I
N | I /10CSn or /CSn
' ' L JOEnN or /IORD and /BUFEN (/BUFEN rd or wr)
| | ]
: : >:<:[>< Datafor read
| | valid
| X | :>< Datafor write 3-sdrive starts at end of T1
| | |
N E— | ~+—— /WEnor/IOWR
|
| | |
|
Notes:

Read may have no wait states.

Write cycles and 1/0 read cycles have at least 1 wait state. Clock
may be asymmetric if clock doubler used. 1/0 chip select avail-
able on port E as option.

Figure 5-4. Bus Timing Read and Write

In some cases, the timing shown in Figure 5-4 may be prefixed by afalse memory access
during the first clock, which is followed by the access sequence shown in Figure 5-4. In
this case, the address and often the chip select will change values after one clock and
assume the final values for the memory to be actually accessed. Output enable and write
enable are always delayed by one clock from the time the final, stable address and chip
select are enabled. Normally the false memory access attempts to start another instruction
access cycle, which is aborted after one clock when the processor realizesthat aread data
or write data bus cycle is needed. The user should not attempt a design that uses the chip
select or amemory address as a clock or state changing signal without taking thisinto con-
Sideration.
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5.5 Description

of Pins with Alternate Functions

Table 5-2. Pins With Alternate Functions

2. Peripheral clock/2.

Pin Name Output Function Input Function Other Function
1. Low on first op code
fetch. Programmabl e output
STATUS (38) 2. Low oninterrupt port high/low
acknowledge
(SMODEO, SMODEL) -
1-bit input after boot
SMODEI1 (35) Startup boot mode complete.
control.
(SMODEO, SMODEZ) -
1-bit input after boot
SMODEDQO (36) Startup boot mode complete.
control.
1. Peripheral clock.
CLK (1) Ipheral cloc Programmable output

port high/low

/WDTOUT (34)

Outputs 30.5 ps pulse on
watchdog timeout
(processor is also reset).

Outputs a pul se between
30.5 and 61 ps under
program control.

PA7 (88) SDh7 SD7
PAG (87) SD6 SD6
PA5 (86) SD5 SD5
PA4 (85) Sbh4 SD4
PA3 (84) SD3 SD3
PA2 (83) Sh2 Sh2
PA1(82) SD1 SD1
PAO (81) SDO SDO

/SLAVEATTN (master
PB7 (100) needs attention from

dave).
PB5 (98) SA1 (slave address).
PB4 (97) SAO

/SRD (strobe for master

PB3 (%6) to read a slave register).
PB2 (95) /SWR (strobe for master

to write slave register).

User’s Manual

57



Table 5-2. Pins With Alternate Functions (continued)

Pin Name Output Function Input Function Other Function

CLKA (serial port A

PB1 (94) clocked mode clock, CLKA
bidirectional).

PBO (93) CLKB (bidirectional). | CLKB

PC7 (51) RXA

PC6 (54) TXA

PC5 (55) RXB

PC4 (56) TXB

PC3 (57) RXC

PC2 (58) TXC

PC1 (59) RXD

PCO (60) TXD

PD7 (43) ARXA

PD6 (44) ATXA

PD5 (45) ARXB

PD4 (46) ATXB

PD3 (47)

PD2 (48)

PD1 (49)

PDO (50)

PE7 (21) g:;gmgrammab'e VO 1 /scs (slave chip select).

PE6 (22) /16

PE5 (23) 5 INT1 (input)

PE4 (24) 4 INTO (input)

PE3 (25) N3

PE2 (27) /2

PE1 (29) 1 INTZ (input)

PEO (30) /10 INTO (input)
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5.6 DC Characteristics

Table 5-3. Rabbit 2000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating
Ta Operating Temperature -55°C to +85°C
Ts Storage Temperature -65°C to +150°C

Maximum Input Voltage’ -0.6t0 (Vpp +0.75) V
Vbb Maximum Operating Voltage 6.0V
Max Current Through Input Protection Diodes 5.0 mA

* The minimum voltage is-0.6 V DC, which may undershoot to -2.0 V for pulses
that are shorter than 20 ns. The maximum output pin voltageisVpp + 0.75V DC,

which may overshoot for pulses that are shorter than 20 ns.

NOTE: Stresses beyond those listed in Table 5-3 may cause permanent damage. Therat-
ingsare stressratings only, and functional operation of the Rabbit 2000 chip at
these or any other conditions beyond thoseindicated in this section is not implied.
Exposure to the absol ute maximum rating conditions for extended periods may affect
the reliability of the Rabbit 2000 chip.
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5.6.1 5.0 Volts

Table 5-4 outlines the DC characteristics for the Rabbit at 5.0 V over the recommended
operating temperature range from T, = —-40°C to +85°C, Vpp = 4.5V to 55 V.

Table 5-4. 5.0 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units
Iy Input Leakage High ViN=Vpps Vpp =55V 10 HA
Input Leakage Low _ _
I ViN=Vss Vpp =55V |-
IL (no pull-up) IN=¥SS 7DD 10 KA
VN =Vpp Or Vgg,
loz Output Leakage (no pull-up) IN _ bb SS -10 10 A
Vpp =55V
ViL CMOS Input Low Voltage 0.3xVpp |V
Vin CMOS Input High Voltage 0.7XxVpp Vv
Vr CMQOS Switching Threshold | Vpp =5.0V, 25°C 24 V;
lOL = See Table 5-6
VoL CMOS Output Low Voltage | (sinking) 02 |04 \Y
VDD =45V
lOH = See Table 5-6
VoH CMOS Output High Voltage | (sourcing) 0.7XVpp 4.2 \V;
VDD =45V
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5.6.2 3.3 Volts

Table 5-5 outlines the DC characteristics for the Rabbit at 3.3 V over the recommended
operating temperature range from T, =—-40°Cto +85°C, Vpp = 2.7V t0 3.6 V.

Table 5-5. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max U2|t
l1H Input Leakage High Vin=Vpbp: Vpp=3.6V 5 HA
L Lr;p))ut Leakage Low (no pull- Vin=Ves Vpp=3.6V 5 UA
V|N:VDD or Vss,
I - -
oz Output L eakage (no pull-up) Vpp=3.6V 5 5 A
Vi CMOS Input Low Voltage 0.3xVpp |V
Vin CMOS Input High Voltage 0.7 X Vpp Vv
Vr CMOS Switching Threshold | Vpp=3.0V, 25°C 15 Vv
lOL= See Table 5-6
VoL CMOS Output Low Voltage | (sinking) 011 |0.4 \Y
VDD:2'7V
lOH= See Table 5-6
VoH CMOS Output High Voltage | (sourcing) 0.7xVpp |23 \Y;
VDD:2'7V
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5.7 1/0 Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking8 mA
of current per pin at full AC switching speed. Full AC switching assumes 22.11 MHz CPU
clock and capacitive loading on address and data lines of lessthan 100 pF per pin. Address
pin AO and Data pin DO are rated at 16 mA each.

Table 5-6 shows the AC and DC output drive limits of the parallel 1/0 buffers.

Table 5-6. 1/0O Buffer Sourcing and Sinking Capability

Output Drive
Pin Name Sourcing’/Sinking™ Limits
(mA)
i t

Outout Port Narme Full AC Switching '\D"‘?X'm“m DC Output

P SRC/SNK fve
SRC/SNK

PA [7:0] 8/8 12/12
PB [7:6] 8/8 12/12
PC[6, 4, 2, 0] 8/8 12/12
PD [7:4] 8/8 12/12
PD [3:0]"" 16/16 25/25
PE [7:0] 8/8 12/12

* Themaximum DC sourcing current for 1/O buffers between Vpp pins
is112 mA.

t The maximum DC sinking current for 1/0O buffers between V gg pinsis
150 mA.

¥ Themaximum DC output drive on 1/O buffers must be adjusted to take
into consideration the current demands made my AC switching out-
puts, capacitive loading on switching outputs, and switching voltage.

The current ascribed to AC switching is the average current that flows
while AC switching istaking place. This can be computed using | =
CVf, where f isthe number of transitions per second, C isthe capaci-
tance switched, and V isthe voltage swing. For example, if 12,000,000
transitions per second take place with a5V swing driving 100 pF, then
| =6 mA for one pin. The current attributable to all the pins between
the power or ground pins must be summed to test the limits, including
the current attributable to switching current or DC current.

Thecurrent drawn by all switching and non-switching I/O must not
exceed the limits specified in the first two footnotes.

** The combined sourcing from Port D [7:0] may need to be adjusted so
as not to exceed the 112 mA sourcing limit requirement specified
above.
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6. RABBIT INTERNAL I/O REGISTERS

6.1 Default Values for all the Peripheral Control Registers

The default values for all of the peripheral control registers are shown in Table 6-1. Addi-
tional 1/0 registers were added in the Rabbit 2000 revisions as listed in the table. Refer to

Section B.2.1 for more information.

Theregisterswithin the CPU affected by areset are the Stack Pointer (SP) register, the Pro-

gram Counter (PC) register, the lIR register, the EIR register, and the IP register. The IP
register isset to all ones (disabling al interrupts), while all of the other listed CPU registers

arereset to dl zeros.

Table 6-1. Rabbit Internal /0O Registers

Register Name Mnemonic | I/O Address R/W Reset
Data Segment Register (data ssgment memory DATASEG
pointer—|ocates data segment in physical 2180 BBR 0x12 R/W 00000000
memory) ( )
Segment Size Register (specifies start of data SEGSIZE
segment and start of stack segment in 64K 7180 CBAR 0x13 R/W 11111111
memory space) ( )
Stack Segment Register (stack segment mem- STACKSEG
ory pointer—locates stack segment in physical 7180 CBR Ox11 R/W 00000000
memory) ( )
Global Control/Status Register (control of
clocks, periodic interrupts, and monitoring of | GCSR 0x0 R/W 11000000
watchdog)
Global Clock Double Register GCDR OxF W xxxxx000
Global Clock Modulator 0 Register (Rev B—C) | GCMOR Ox0A W 00000000
Global Clock Modulator 1 Register (Rev B—C) | GCM 1R 0x0B W 00000000
Global CPU Configuration Register (Rev A—C) | GCPU Ox2E R 0xx00000
Global Output Control Register GOCR OxE W 00000x00
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Table 6-1. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
R2000 Global Revision Register (Rev A—C) 0xx00000
R2000A Global Revision Register (Rev A—C) 0xx00001
GREV Ox2F R

R2000B Global Revision Register (Rev A—C) 0xx00010
R2000C Global Revision Register (Rev A—C) 0xx00011
[/0 Bank 0 Control Register IBOCR 0x80 W 00000xxx
[/0 Bank 1 Control Register IBICR 0x81 W 00000xxx
[/0 Bank 2 Control Register IB2CR 0x82 W 00000xxx
[/0 Bank 3 Control Register IB3CR 0x83 W 00000xxx
I/0 Bank 4 Control Register IB4CR 0x84 W 00000xxx
[/0 Bank 5 Control Register IB5CR 0x85 W 00000xxx
[/0 Bank 6 Control Register IB6CR 0x86 W 00000xxx
[/0 Bank 7 Control Register IB7CR 0x87 W 00000xxx
Interrupt O Control Register IOCR 0x98 W xx000000
Interrupt 1 Control Register I1CR 0x99 W xx000000
Memory Bank 0 Control Register (Rev A—C) | MBOCR 0x14 W 00001000
Memory Bank 0 Control Register (original chip) | MBOCR 0x14 W 00000000
Memory Bank 1 Control Register MB1CR 0x15 W XXXXXXXX
Memory Bank 2 Control Register MB2CR 0x16 W XXXXXXXX
Memory Bank 3 Control Register MB3CR 0x17 W XXXXXXXX
MMU Instruction/Data Register (controls| & D

space enable and battery switchover support | MMIDR 0x10 R/W xxx00000
for /CS1)

Memory Timing Control Register (Rev C) MTCR 0x19 W xxxx0000
Port A Data Register PADR 0x30 R/W XXXXXXXX
Port B Data Register PBDR 0x40 R/W OOXXXXXX
Port C Data Register PCDR 0x50 R/W X0x0x0x0
Port C Function Register PCFR 0x55 W X0x0x0x0
Port D Data Register PDDR 0x60 R/W XXXXXXXX
Port D Control Register PDCR 0x64 W xx00xx00
Port D Function Register PDFR 0x65 W XXXXXXXX
Port D Drive Control Register PDDCR 0x66 W XXXXXXXX
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Table 6-1. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
Port D Data Direction Register PDDDR 0x67 W 00000000
Port D Bit 0 Register PDBOR 0x68 W XXXXXXXX
Port D Bit 1 Register PDB1R 0x69 W XXXXXXXX
Port D Bit 2 Register PDB2R OxB6A W XXXXXXXX
Port D Bit 3 Register PDB3R 0x6B W XXXXXXXX
Port D Bit 4 Register PDB4R 0x6C W XXXXXXXX
Port D Bit 5 Register PDB5R 0x6D W XXXXXXXX
Port D Bit 6 Register PDB6R Ox6E W XXXXXXXX
Port D Bit 7 Register PDB7R Ox6F W XXXXXXXX
Port E Data Register PEDR 0x70 R/W XXXXXXXX
Port E Control Register PECR Ox74 W xx00xx00
Port E Function Register PEFR 0x75 W XXXXXXXX
Port E Data Direction Register PEDDR Ox77 W 00000000
Port E Bit 0 Register PEBOR 0x78 W XXXXXXXX
Port E Bit 1 Register PEB1R 0x79 W XXXXXXXX
Port E Bit 2 Register PEB2R Ox7A W XXXXXXXX
Port E Bit 3 Register PEB3R Ox7B W XXXXXXXX
Port E Bit 4 Register PEB4R Ox7C W XXXXXXXX
Port E Bit 5 Register PEB5R O0x7D W XXXXXXXX
Port E Bit 6 Register PEB6R Ox7E W XXXXXXXX
Port E Bit 7 Register PEB7R Ox7F W XXXXXXXX
Real Time Clock Control Register RTCCR Ox1 W 00000000
Real Time Clock Byte O Register RTCOR 0x2 R/W XXXXXXXX
Real Time Clock Byte 1 Register RTCIR 0x3 R XXXXXXXX
Real Time Clock Byte 2 Register RTC2R 0x4 R XXXXXXXX
Real Time Clock Byte 3 Register RTC3R 0x5 R XXXXXXXX
Real Time Clock Byte 4 Register RTC4R 0x6 R XXXXXXXX
Real Time Clock Byte 5 Register RTC5R Ox7 R XXXXXXXX
Seria Port A Data Register SADR 0xCO R/W XXXXXXXX
Serial Port A Address Register SAAR 0xC1 W XXXXXXXX
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Table 6-1. Rabbit Internal I/0O Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
Seria Port A Status Register SASR OxC3 R 0xx00000
Serial Port A Control Register SACR 0xC4 W xx000000
Serial Port B Data Register SBDR 0xDO R/W XXXXXXXX
Serial Port B Address Register SBAR 0xD1 W XXXXXXXX
Serial Port B Status Register SBSR 0xD3 R 0xx00000
Serial Port B Control Register SBCR 0xD4 W xx000000
Serial C Data Register SCDR OxXEO R/W XXXXXXXX
Serial C Address Register SCAR OxE1 W XXXXXXXX
Serial C Status Register SCSR OxE3 R 0xx00000
Serial C Control Register SCCR OxE4 W xx00x000
Seria Port D Data Register SDDR OxFO R/W XXXXXXXX
Serial Port D Address Register SDAR OxF1 W XXXXXXXX
Serial Port D Status Register SDSR OxF3 R 0xx00000
Serial Port D Control Register SDCR OxF4 W xx00x000
Serial Port A Long Stop Register (Rev A-C) | SALR OxC2 R/W XXXXXXXX
Serial Port B Long Stop Register (Rev A-C) | SBLR 0xD2 R/W XXXXXXXX
Serial Port C Long Stop Register (Rev A—-C) | SCLR OxE2 R/W XXXXXXXX
Serial Port D Long Stop Register (Rev A—C) | SDLR OxF2 R/W XXXXXXXX
Slave Port Control Register SPCR 0x24 R/W 000x0000
Slave Port Data O Register SPDOR 0x20 R/W XXXXXXXX
Slave Port Data 1 Register SPD1R 0x21 R/W XXXXXXXX
Slave Port Data 2 Register SPD2R 0x22 R/W XXXXXXXX
Slave Port Status Register SPSR 0x23 R 00000000
Timer A Control/Status Register TACSR OxAO R/W 0000xx00
Timer A Control Register TACR OxA2 W 0000xx00
Timer A Time Constant 1 Register TATIR OxA3 W XXXXXXXX
Timer A Time Constant 4 Register TAT4R OxA9 W XXXXXXXX
Timer A Time Constant 5 Register TAT5R OxAB W XXXXXXXX
Timer A Time Constant 6 Register TAT6R OxAD W XXXXXXXX
Timer A Time Constant 7 Register TAT7R OxAF W XXXXXXXX
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Table 6-1. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
Timer B Control/Status Register TBCSR 0xBO R/W Xxxxx000
Timer B Control Register TBCR 0xB1 W xxxx0000
Timer B MSB 1 Register TBM1R 0xB2 W XXXXXXXX
Timer B LSB 1 Register TBL1R 0xB3 W XXXXXXXX
Timer B MSB 2 Register TBM2R 0xB4 W XXXXXXXX
Timer B LSB 2 Register TBL2R 0xB5 W XXXXXXXX
Timer B Count MSB Register TBCMR OxBE R XXXXXXXX
Timer B Count LSB Register TBCLR OxBF R XXXXXXXX
Watchdog Timer Control Register WDTCR 0x8 W 00000000
Watchdog Timer Test Register WDTTR 0x9 W 00000000
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7. MISCELLANEOUS I/O FUNCTIONS

7.1 Processor ldentification

Two read-only registers are provided to allow software to identify the Rabbit microproces-
sor and recogni ze the features and capabilities of the chip. Five bitsin each of these regis-
ters are unique to each version of the chip. One register (GCPU) identifies the CPU, and
the other register (GREV) isreserved for revision identification. The CPU identification
(GCPU) of all revisions of the Rabbit 2000 microprocessor is the same. Rabbit 2000 revi-
sions are differentiated by the value in the GREV register. Refer to Section B.2.2 for more
information.
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7.2 Rabbit Oscillators and Clocks

There are two crystal oscillators built into the Rabbit. The main oscillator accepts crystals
up to afrequency of 29.4912 MHz (first overtone crystals only). The clock oscillator
requires a 32.768 kHz crystal, which is powered by VBAT, and can be battery-backed.

An external oscillator or clock can be substituted for either crystal by connecting the
external clock to XTALAL or XTALB1 and leaving the other crystal pin (XTALAZ2 or
XTALB?2) unconnected. If an external oscillator is used for the main clock the output pin
CLK (pin 1) should be used if the clock is needed externally. This signal is synchronized
with the internal clock. In comparison, the internal clock is delayed by approximately 10
nanoseconds compared to the external oscillator input XTALBL.

The main oscillator is normally used to derive the clock for the processor and peripherals.
The 32.768 kHz oscillator is normally used to clock the watchdog timer, the battery back-
able time/date clock, and the periodic interrupt. The main oscillator can be shut down in a
special low-power mode of operation, and the 32.768 kHz oscillator is then used to clock
all the things normally clocked by the main oscillator. This resultsin slower execution at

low power (~200 pA).

The on-chip routing of the clocksis shown in Figure 7-1. The main oscillator can be dou-
bled in frequency and/or divided by 8. If both doubling and dividing are enabled, then
there will be anet division by 4. The CPU clock can optionally by divided by 2 and then
optionally drive the external pin CLK. In many cases the clock is not needed externally,
and in that case CLK can be used as a general-purpose output pin. The divide-by-2 option
Isavailable to minimize electromagnetic radiation if theis clock is driven off chip.

f or f/2— ext pin
— disable 2 |—»CLK
| |

T : Clock
— Main Osc Doubler /8 CPU
= |32kHzOx Peripheral
_—= Devices

To Watchdog Timer and

Time/Date Clock Note: Peripherals cannot be clocked

sower than CPU.

Figure 7-1. Clock Distribution

70 Rabbit 2000 Microprocessor



Table 7-1. Global Control/Status Register (I/O adr = 00h)
Bit(s) Value Description
7:6 00 No reset or watchdog timer timeout since the last read.
(read only) o1 Thg watchdog timer timed out. These bits are cleared by aread of this
register.
10 This bit combination is not possible.
11 Reset occurred. These bits are cleared by aread of this register.
5 (writeonly) |0 Read thisregister to clear periodic interrupt request. Thishbit alwaysread as
zero.
1 Force a periodic interrupt.
. Processor clock from the main oscillator, divided by eight.
4:2 (writeonly) | 000 . : . - ;
(write only) Peripheral clock from the main oscillator, divided by eight.
Processor clock from the main oscillator, divided by eight.
001 , . . . -
Peripheral clock from the main oscillator, without divider.
Processor clock from the main oscillator, without divider.
01x . . . . .
Peripheral clock from the main oscillator, without divider.
10 Processor clock from the 32 kHz oscillator, without divider.
Peripheral clock from the 32 kHz oscillator, without divider.
Processor clock from the 32 kHz oscillator, without divider.
1x1 Peripheral clock from the 32 kHz oscillator, without divider.
The main oscillator isturned off.
1:0 (writeonly) |00 Periodic interrupts are disabled.
01 Periodic interrupts use Interrupt Priority 1.
10 Periodic interrupts use Interrupt Priority 2.
11 Periodic interrupts use Interrupt Priority 3.
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7.3 Clock Doubler

The clock doubler is provided to allow alower frequency crystal to be used for the main
oscillator and to provide an added range of clock frequency adjustability. The clock dou-
bler uses an on-chip delay circuit that must be programmed by the user at startup if thereis
aneed to double the clock. Table 7-2 lists the recommended delays for various oscillator
frequencies.

Table 7-2. Global Clock Double Register (GCDR, adr = 0fh)

Bit(s) Value Description
7:3 XXXXX These bits are ignored.
2.0 000 The clock double circuit is disabled.
001 8 nsnominal low time.
010 10 ns nominal low time.
011 12 nsnominal low time.
100 14 nsnominal low time.
101 16 ns nominal low time.
110 18 ns nominal low time.
111 20 nsnominal low time.

When the clock doubler isused and thereis no subsequent division of the clock, the output
clock will be asymmetric, as shown in Figure 7-2. The doubled-clock low time is subject
to wide (50%) variation since it depends on process parameters, temperature, and voltage.
The times given above are for a supply voltage of 5V and atemperature of 25°C. The
doubled-clock low time increases by 20% when the voltage is reduced to 4 V, and
increases by about 40% when the voltage is reduced further to 3.3 V. The values increase
or decrease by 1% for each 5°C increase or decrease in temperature. The doubled clock is
created by xor’ing the delayed and inverted clock with itself. If the original clock does not
have a 50-50 duty cycle, then alternate clocks will have a dlightly different length. Since
the duty cycle of the built-in oscillator can be as asymmetric as 52-48, the clock generated
by the clock doubler will exhibit up to a 4% variation in period on alternate clocks. This
does not affect the no-wait states memory access time since two adjacent clocks are
always used. However, the maximum allowed clock speed must be reduced by 10% if the
clock issupplied viathe clock doubler. The only signals clocked on the falling edge of the
clock are the memory and 1/0 write pulses, and these have noncritical timing. Thus the
length of the clock low timeisnoncritical aslong asit isnot so long asto shorten the clock
high time excessively, which could make the write pulse too short for the memory used.
Thisisunlikely to happen with practical clock speeds and typical static RAM memories.
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Figure 7-2. Effect of Clock Doubler

The power consumption is proportional to the clock frequency, and for this reason power
can be reduced by slowing the clock when less computing activity is taking place. The
clock doubler provides a convenient method of temporarily speeding up or slowing down
the clock as part of a power management scheme.
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7.4 Controlling Power Consumption

The processor power consumption can be traded against speed by slowing the system
clock, adding wait states, using low-power-consumption instructions, and for maximum

power savings disabling the main system oscillator and using the real-time clock oscillator
to provide the clock. The following power saving features can be enabled.

Add memory wait states for instruction fetching. Total wait states are programmable as
0,1, 2 or 4. Generally two wait states should use half the power of zero wait states.

If the clock doubler isnot already in use, divide both the processor and the peripheral
clock by 4. Thisis permissible if nothing, particularly timers and serial ports, depends
on the peripheral clock.

If the clock doubler isin use, turn it off, dividing both processor and peripheral by 2.
Divide the processor and/or peripheral clock by 8.
Run code in RAM rather than flash memory.

Switch the processor and peripheral clock to the 32.768 kHz oscillator and, if desired,
disable the main oscillator.

Execute alow-power instruction loop consisting mostly of instructions that don’t use
much power. The best choice is successive mul instructions that multiply 0 x 0. No
intervening instructions are needed to load the termsto be multiplied after the first mul
since all registersinvolved stay at zero.

It isanticipated that these measures would reduce current consumption to as low as 25 pA
plus some leakage that would be significant at high operating temperatures.
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7.5 Output Pins CLK, STATUS, /WDTOUT, /BUFEN

Certain output pins can have alternate assignments as specified in Table 7-3.

Table 7-3. Global Output Control Register (GOCR = OEh)

Bit(s) Value Description

7:6 00 CLK pinisdriven with peripheral clock.
01 CLK pinisdriven with peripheral clock divided by 2.
10 CLK pinislow.
11 CLK pinishigh.

5.4 00 STATUS pinisactive (low) during afirst opcode byte fetch.
01 STATUS pinis active (low) during an interrupt acknowledge.
10 STATUSpinislow.
11 STATUSpinishigh.

3 1 WDTOUTB pinislow (1 cycle minimum, 2 cycles maximum, of 32 kHz).
0 WDTOUTB pin follows watchdog function.

2 X Thishit isignored.

1:0 00 /BUFEN pin is active (low) during external 1/0 cycles.
01 /BUFEN pinisactive (low) during data memory accesses.
10 /BUFEN pinislow.
11 /BUFEN pin is high.
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7.6 Time/Date Clock (Real-Time Clock)

The time/date clock (RTC) is a48-hit (ripple) counter that is driven by the 32.768 kHz
oscillator. The RTC isamodified ripple counter composed of six separate 8-bit counters.
The carries are fed into all six 8-bit counters at the same time and then ripple for 8 bits.
Thetimefor thisrippleto take placeis afew nanoseconds per bit, and certainly should not
should not exceed 200 nsfor all 8 bits, even when operating at low voltage.

The 48 bits are enough bits to count up 272 years at the 32 kHz clock frequency. By con-
vention, 12 AM on January 1, 1980, is taken as time zero. Z-World software ignores the
highest order bit, giving the counter a capacity of 136 yearsfrom January 1, 1980. To read
the counter value, the value isfirst transferred to a 6-byte holding register. Then the indi-
vidual bytes may be read from the holding registers. To perform the transfer, any data bits
are written to RTCOR, the first holding register. The counter may then be read as six 8-bit
bytes at RTCOR through RTC5R. The counter and the 32 kHz oscillator are powered from
a separate power pin that can be provided with power while the remainder of the chipis
powered down. This design makes battery backup possible. Since the processor operates
on adifferent clock than the RTC, thereis the possibility of performing atransfer to the
holding registers while a carry istaking place, resulting in incorrect information. In order
to prevent this, the processor should do the clock read twice and make sure that the value
isthe same in both reads.

If the processor isitself operating at 32 kHz, the read-clock procedure must be modified
since a number of clock counts would take place in the time needed by the slow-clocked
processor to read the clock. An appropriate modification would be to ignore the lower
bytes and only read the upper 5 bytes, which are counted once every 256 clocks or every
1/128th of a second. If the read cannot be performed in thistime, further low-order bits
can be ignored.

The RTC registers cannot be set by awrite operation, but they can be cleared and counted
individually, or by subset. In this manner, any register or the entire 48-bit counter can be
set to any value with no more than 256 steps. If the 32 kHz crystal is not installed and the
input pin is grounded, no counting will take place and the six registers can be used asa
small battery-backed memory. Normally this would not be very productive since the cir-
cuitry needed to provide the power switchover could also be used to battery-back aregular
low-power static RAM.

Table 7-4. Real-Time Clock Read Registers

Real-Time Clock x Holding Register (RTCOR) R/'W  (Address = 00000010)
(RTCIR) (Address = 00000011)
(RTC2R) (Address = 00000100)
(RTC3R) (Address = 00000101)
(RTC4R) (Address = 00000110)
(RTC5R) (Address = 00000111)
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Table 7-5. Real-Time Clock RTCxR Data Registers

Bit(s) Value Description
7.0 Read The current value of the 48-bit RTC holding register is returned.
. Writing to the RTCOR transfers the current count of the RTC to six holding
Write . . : .
registers while the RTC continues counting.

Table 7-6. Real-Time Clock Control Register (RTCCR adr = 01h)

Bit(s) Value Description
70 0oh No effect on the RTC counter, disable the byte increment function,
' or cancel the RTC reset command (except code 80h)
40h Arm RTC for areset with code 80h or reset and byte increment
function with code OcOh.
Resets all six bytes of the RTC counter to 00h if proceeded by arm
80h
command 40h.
oh Resets all six bytes of the RTC counter to 00h and enters byte
increment mode—precede this command with 40h arm command.
This bit combination must be used with every byte increment write
to increment clock(s) register corresponding to bit(s) setto "1".
7.6 01 Example: 01001101 increments registers: 0, 2,3. The byte
increment mode must be enabled. Storing 00h cancels the byte
increment mode.
5:0 0 No effect on the RTC counter.
1 Increment the corresponding byte of the RTC counter.
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7.7 Watchdog Timer

The watchdog timer isa 17-bit counter. In normal operation it is driven by the 32.768 kHz
clock. When the watchdog timer reaches any of several values corresponding to adelay of
from 0.25 to 2 seconds, it "times out.” When it times out, it emits a 1-clock pulse from the
watchdog output pin and it resets the processor viaan interna circuit. To prevent this
timeout, the program must "hit" the watchdog timer before it times out. The hit is accom-
plished by storing a code in WDTCR. Note that although a watchdog timeout resets the
processor, it does not reset the timeout period stored in the WDTCR. This was done inten-
tionally because an application may require the initialization of the processor resulting
from the watchdog timeout to be based on a specific timeout period that is different from
that of the reset initialization.

Table 7-7. Watchdog Timer Control Register (WDTCR adr = 08h)

Bit(s) Value Description
7:0 5Ah Restart (hit) the watchdog timer, with a 2-second timeout period.
57h Restart (hit) the watchdog timer, with a 1-second timeout period.
5%h Restart (hit) the watchdog timer, with a 500 ms timeout period.
53h Restart (hit) the watchdog timer, with a 250 ms timeout period.
other No effect on watchdog timer.

The watchdog timer may be disabled by storing a special code in the WDTTR register.
Normally this should not be done unless an external watchdog device isused. The purpose
of the watchdog is to unhang the processor from an endless |oop caused by a software
crash or a hardware upset.

It isimportant to use extreme care in writing software to hit the watchdog timer (or to turn
off the watchdog timer). The programmer should not sprinkle instructionsto hit the watch-
dog timer throughout his program because such instructions can become part of an endless
loop if the program crashes and thus disable the recovery ability given by having awatch-
dog.

The following is a suggested method for hitting the watchdog. An array of bytesis set up
in RAM. Each of these bytesisavirtual watchdog. To hit a virtual watchdog, a number is
stored in abyte. Every virtual watchdog is counted down by an interrupt routine driven by
aperiodic interrupt. This can happen every 10 ms. If none of the virtual watchdogs has
counted down to zero, the interrupt routine hits the hardware watchdog. If any have
counted down to zero, the interrupt routine disables interrupts, and then enters an endless
loop waiting for the reset. Hits of the virtual watchdogs are placed in the user’s program at
“must exercise” locations.
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Table 7-8. Watchdog Timer Test Register (WDTTR adr = 09h)

Bit(s) Value Description
70 51h Clock the least significant byte of the WDT timer from the peripheral
' clock. (Intended for chip test and code 54h below only.)

50h Clock the most significant byte of the WDT timer from the peripheral
clock. (Intended for chip test and code 54h below only.)

53h Clock both bytes of the WDT timer, in parallel, from the peripheral clock.
(Intended for chip test and code 54h below only.)
Disable the WDT timer. This value, by itself, does not disable the WDT

54h timer. Only a sequence of two writes, where the first write is 51h, 52h or
53h, followed by awrite of 54h, actually disablesthe WDT timer. The
WDT timer will be re-enabled by any other write to this register.

other Normal clocking (32 kHz oscillator) for the WDT timer. Thisisthe

condition after reset.

The code to do this may also hit the watchdog with a 0.25-second period to speed up the
reset. Such watchdog code must be written so that it is highly unlikely that a crash will

incorporate the code and continue to hit the watchdog in an endless loop. The following

suggestions will help.

1. Place ajump to self before the entry point of the watchdog hitting routines. This pre-

vents entry other than by adirect call or jump to the routine.

2. Before calling the routine, set a data byte to a special value and then check it in the rou-

tine to make sure the call came from theright caller. If not, go into an endless loop with
interrupts disabled.

3. Maintain data corruption flags and/or checksums. If these go wrong, go into an endless
loop with interrupts off.
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7.8 System Reset

The Rabbit has a master reset input (/RESET), which initializes everything in the device
except for the RTC. Thisreset is delayed until the completion of any write cyclesin
progress to prevent any potential corruption of memory. If no write cycles are in progress,
the reset takes effect immediately.

The purpose of inhibiting the completion of reset until write cyclesin progress are com-
pleted isto protect variablesin battery-backed memory from corruption when areset takes
place. However, if the power controller responsible for battery switchover blocks the chip
select signal to the RAM, the writesin progress will be aborted in any case. Thisis not
necessarily serious as software schemes can be used to protect critical variablesin battery-
backed memory.

The reset sequence requires aminimum of 128 cycles of the fast oscillator to complete,
even if no write cycleswere in progress at the start of the reset. Reset forces both the pro-
cessor clock and the peripheral clock in the divide-by-eight mode. Note that if the proces-
sor is being clocked from the 32 kHz oscillator, the 128 cycles of the fast oscillator will
probably not be sufficient to allow any writesin progress to be completed before the reset
sequence completes and the clocks switch to divide-by-eight mode.

During reset, al of the memory control signals are held inactive. After the/RESET signal
isinactive (high), the processor begins fetching instructions and the memory control sig-
nals begin normal operation. Note that the default values in the Memory Bank Control
registers select four wait states per access, so theinitial program fetch memory reads are
48 clock cycleslong (8 x (2 + 4)). Software can immediately adjust the processor timing
to whatever the system requires.

The default selection for the memory control signals consists of /CS0, /OEOQ and /WEQ,
and writes are enabled. This selection can also be immediately programmed to match the
hardware configuration. A typical sequence would be to speed up the clock to full speed,
then select the appropriate number of wait states and the chip select signals, output enable
signals and write enable signals. At this point software would usually check the system
status to determine what type of reset just occurred and begin normal operation.

Table 7-9 describes the state of the 1/O pins after an external reset is recognized by the
Rabbit CPU. Note that the/RESET signal must be held low for three clocks for the proces-
sor to begin the reset sequence. There is no facility to tri-state output lines such asthe
address lines and the memory and 1/0O control lines.
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Table 7-9. Rabbit 2000 Reset Sequence and State of I1/0O Pins

/RESET Low"

Pin Name Direction Recognized by CPU Post-Reset’

/RESET Input Low or High High
CLK Output High Operational
XTALA1 Input Not Affected Not Affected
XTALA2 Output Not Affected Not Affected
XTALB1 Input Not Affected Not Affected
XTALB2 Output Not Affected Not Affected
A[19:0] Output Last Value 0x00000
D[7:0] Bidirectional Highz Highz
/WDTOUT Output High High
STATUS Output High (S;Tﬁig:ai)
SMODE[1:0] Input Not Affected Not Affected
/CSO Output High Operational
/CS1 Output High High
/CS2 Output High High
/OEQ Output High Operational
/OE1 Output High High
/WEO Output High High
/WE1 Output High High
/BUFEN Output High High
/IORD Output High High
/IOWR Output High High
PA[7:0] I nput/Output 22777777 27277777
PB[7:0] I nput/Output 00zzzzzz 00zzzzzz
PC[7:0] 4 In/4 Out z0z1z1z1 z0z0z0z0
PD[7:0] I nput/Output 77777777 77277777
PE[7:0] I nput/Output 77777777 77727777

* A low isrecognized internally by the processor after a reset

Tt The default state of the 1/0 ports after the completion of the reset and initializa-

tion sequences
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7.9 Rabbit Interrupt Structure

An interrupt causes a call to be executed, pushing the PC on the stack and starting to exe-
cute code at the interrupt vector address. Theinterrupt vector addresses have afixed lower
byte value for all interrupts. The upper byte is adjustable by setting the registers EIR and

IR for external and internal interrupts respectively. There are only two externa interrupts
generated by transitions on certain pinsin parallel port E.

The interrupt vectors are shown in Table 7-10.

Table 7-10. Peripheral Device Address and Interrupt Vectors

On-Chip Peripheral

ISR Starting Address

System Management (periodic interrupt)

{1IR, 0x00h}

Memory Management

No interrupts

Slave Port {IIR, 0x80}

Parallel Port A No interrupts
Parallel Port B No interrupts
Parallel Port C No interrupts
Parallel Port D No interrupts
Parallel Port E No interrupts

External 1/0 Control

No interrupts

External Interrupts

INTO{EIR, Ox00}
INT1{EIR, Ox10}

Timer A {IIR, OXAC}
Timer B {1IR, OXBO}
Serial Port A {1IR, OXCO}
Serial Port B {lIR, OXDO}
Serial Port C {1IR, OXEO}
Serial Port D {1IR, OXFO}
RST 10 instruction {IIR, 0x20}
RST 18 instruction {IIR, Ox30}
RST 20 instruction {IIR, Ox40C}
RST 28 instruction {IIR, Ox50}
RST 38 instruction {lIR, Ox7C}
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The interrupts differ from most Z80 or Z180 interrupts in that the 256-byte tables pointed
to EIR and IIR contain the actual instructions beginning the interrupt routinesrather than a
16-bit pointer to the routine. The interrupt vectors are spaced 16 bytes apart so that the
entire code will fit in the table for very small interrupt routines.

Interrupts have priority 1, 2 or 3. The processor operates at priority O, 1, 2 or 3. If aninter-
rupt is being requested, and its priority is higher than the priority of the processor, the
interrupt will take place after then next instruction. The interrupt automatically raises the
processor’s priority to its own priority. The old processor priority is pushed into the 4-
position stack of priorities contained in the IP register. Multiple devices can be requesting
interrupts at the same time. In each case there is alatch set in the device that requests the
interrupt. If that latch is cleared before the interrupt is latched by the central interrupt
logic, then the interrupt request islost and no interrupt takes place. Thisis shownin
Table 7-11. The priorities shown in thistable apply only for interrupts of the same priority
level and are only meaningful if two interrupts are requested at the same time. Most of the
devices can be programmed to interrupt at priority level 1, 2 or 3.

Table 7-11. Interrupts—Priority and Action to Clear Requests

Priority Interrupt Source Action Required to Clear the Interrupt
Highest External 1 Automatically by interrupt acknowledge.
External O Automatically by interrupt acknowledge.
Periodic (2 kHz) Read GCSR.
Timer B Read TBCSR".
Timer A Read TACSR.
Slave Port Write SPSR.
. Rx: Read SADR or SAAR.
Seril Port A Tx: Write SADR, SAAR or SASR
. Rx: Read SBDR or SBAR.
Serial Port B Tx: Write SBDR, SBAR or SBSR
Rx: Read SCDR or SCAR.
Serial Port C
I Tx: Write SCDR, SCAR or SCSR
Rx: Read SDDR or SDAR.
Lowest Serial Port D X o

Tx: Write SDDR, SDAR or SDSR

* | the compare registers (TBMxR and TBLXR) are not written within the I SR, the interrupt will
will only be requested once.

In the case of the external interrupts the only action that will clear the interrupt request is
for the interrupt to take place, which automatically clears the request. A specia action
must be taken in the interrupt service routine for the other interrupts.
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7.9.1 External Interrupts

There are two external interrupts. Because of a problem in the original Rabbit design, only
one of theseinterruptsisavailable for general use. The problem was corrected in revisions
A—C of the Rabbit 2000. (Refer to Appendix B for further information to determine which
version of the Rabbit 2000 chip you are using.) If you are working with an original Rabbit
2000 chip, see Technical Note 301, Rabbit 2000 Microprocessor I nterrupt Problem.

External interrupts take place on atransition of the input, which is programmable for ris-
ing, falling or both edges. The pulse catchers are programmable separately to detect aris-
ing, falling, or either edgein theinput. The pairs of pulse catchersthat are connected to the
same interrupt should be programmed for the same type of edge detection. Each of the
interrupt pins hasits own catcher device to catch the edge transition and request the interrupt.

When the interrupt takes place, both pulse catchers associated with that interrupt are auto-
matically reset. If both edges are detected before the corresponding interrupt takes place,
because the triggering edges occur nearly simultaneously or because the interrupts are
inhibited by the processor priority, then there will be only one interrupt for the two edges
detected. The interrupt service routine can read the interrupt pins via paralel port E and
determine which lines experienced a transition, provided that the transitions are not too
fast. Interrupts can also be generated by setting up the matching port E bit as an output and
toggling the bit.

Table 7-12. Control Registers for External Interrupts

Reg Name | Reg Address Bits 7,6 Bits 5,4 Bits 3,2 Bits 1,0

I0CR 10011000 XX INTOB PE4 INTOA PEO Enb INTO

I1CR 10011001 XX INT1B PE5 INT1A PE1 Enb INT1
edgetriggered |edgetriggered |interrupt
00-disabled 00-disabled 00-disable
10-rising 10-rising 01-pri 1
01-faling 01-faling 10-pri 2
11-both 11-both 11-pri 3
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7.9.2 Interrupt Vectors: INTO - EIR,00h/INT1 - EIR,08h

When it isdesired to expand the number of interruptsfor additional peripheral devices, the
user should use the interrupt routine to dispatch interrupts to other virtual interrupt rou-
tines. Each additional interrupting device will have to signal the processor that it is
requesting an interrupt. A separate signal line is needed for each device so that the proces-
sor can determine which devices are requesting an interrupt.

The following code shows how the interrupt service routines can be written.

External interrupt Routine #1
intl:
| PRES ; restore systempriority
RET ; return and ignore interrupt

; External interrupt Routine #0 (programred priority could be 3)
int2:
PUSH IP ; save interrupt priority
IPSET 1 ; set to priority really desired (1, 2, etc.)
i nsert body of interrupt routine here

POP I P ; get back entry priority
| PRES ; restore interrupted routine’s priority
RET ; return frominterrupt
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7.10 Bootstrap Operation

The device provides the option of bootstrap from any of three sources: from the Slave
Port, from Serial Port A in clocked serial mode, or from Serial Port A in asynchronous
mode. Thisis controlled by the state of the SMODE pins after reset. Bootstrap operationis
disabled if (SMODEL, SMODEQ) = (0, 0).

Bootstrap operation inhibits the normal fetch of code from memory, and instead substi-
tutes the output of asmall internal boot ROM for program fetches. This bootstrap program
reads groups of three bytes from the selected peripheral device. Thefirst byte is the most
significant byte of a 16-bit address, followed by the least-significant byte of a 16-bit
address, followed by a byte of data. The bootstrap program then writes the byte of datato
the downloaded address and jumps back to the start of the bootstrap program. The most
significant bit of the addressis used to determine the destination for the byte of data. If this
bit is zero, the byte is written to the memory location addressed by the downloaded
address. If thishit is one, the byte is written to the internal peripheral addressed by the
downloaded address. Note that all of the memory control signals continue to operate nor-
mally during bootstrap.

Execution of the bootstrap program automatically waits for data to become available from
the selected peripheral, and each byte transferred automatically resets the watchdog timer.
However, the watchdog timer still operates, and bytes must be transferred often enough to
prevent the watchdog timer from timing out.

Bootstrap operation is terminated when the SMODE pins are set to zero. The SMODE
pins are sampled just prior to fetching the first instruction of the bootstrap program. If the
SMODE pins are zero, instructions are fetched from normal memory starting at address
0000h. The Slave Port Control register allows the bootstrap operation to be terminated
remotely. Writing aoneto bit 7 of this register causes the bootstrap operation to terminate
immediately. So the sequence 80h, 24h and 80h will terminate bootstrap operation.

Bootstrap operation is not restricted to the time immediately after reset because the boot

ROM is addressed by only the four least significant bits of the address. So any time that

the address ends in four zeros, if the SMODE pins are non-zero and bit 7 of the SPCR is
zero, the bootstrap program will begin execution. This allows in-line downloading from

the selected bootstrap port. Upon completion of the bootstrap operation, either by return-
ing the SMODE pins to zero or setting the bit in the SPCR, execution will continue from
where it was interrupted for the bootstrap operation.

The Slave Port is selected for bootstrap operation when (SMODE1, SMODEOQ) = (0, 1). In
this case the pins of Parallel Port A are used for a byte-wide data bus, and selected pins of
Parallel Ports B and E are used for the Slave Port control signals. Only Slave Port Data
Register 0 isused for bootstrap operation, and any writesto the other dataregisterswill be
ignored by the processor, and can actually interfere with the bootstrap operation by mask-
ing the Write Empty signal.
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Serial Port A is selected for bootstrap operation as a clocked seria port when SMODE =
10. Inthiscase bit 7 of Parallel Port Cisused for the serial dataand bit 1 of Parallel Port B
Isused for the serial clock. Note that the serial clock must be externally supplied for boot-
strap operation. This precludes the use of a serial EEPROM for bootstrap operation.

Serial Port A is selected for bootstrap operation as an asynchronous serial port when
SMODE = 11. Inthiscase bit 7 of Parallel Port C is used for the serial data and the 32 kHz
oscillator is used to provide the serial clock. A dedicated divide circuit allows the use of
the 32 kHz signal to provide the timing reference for the 2400 bps asynchronous transfer.
Only 2400 bpsis supported for bootstrap operation, and the serial data must be eight bits
for proper operation.

When abootstrap is performed using Seria Port A, the TXA signal is not needed since the
bootstrap is a one-way communication. After the reset ends and the bootstrap mode
begins, TXA will be low, reflecting its function as a parallel port output bit that is cleared
by the reset. This may be interpreted as a break signal by some serial communication
devices. TXA can be forced high by sending the triplet 80h, 50h, 40h, which stores 40h in
paralel port C. An alternate approach isto send the triplet 80h, 55h, 40h, which will
enable the TXA output from bit 6 of parallel port C by writing to the parallel port C func-
tion register (55h).

The transfer rate in any bootstrap operation must not be too fast for the processor to exe-
cute the instruction stream. The Write Empty signal acts as an interlock when using the
Slave Port for bootstrap operation, because the next byte should not be written to the Slave
Port until the Write Empty signal is active. No such interlock exists for the clocked serial
and asynchronous bootstrap operation. In these cases, remember that the processor clock
starts out in divide-by-eight mode with four wait states, and limit the transfer rate accord-
ingly. In asynchronous mode at 2400 bps it takes about 4 msto send each character, so no
problem is likely unless the system clock is extremely slow.
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8. MEMORY MAPPING AND INTERFACE

See Section 3.2, “Memory Mapping,” for adiscussion of the Rabbit memory mapping.

Figure 8-1 shows an overview of the Rabbit memory mapping. The task of the memory
mapping unit is to accept 16-bit addresses and trand ate them to 20-bit addresses. The
memory interface unit accepts the 20-bit addresses and generates control signals applied
directly to the memory chips.

Processor | o | Memory |4 . Memory ogﬂﬁmory
Mapping Interface IpS

Unit

Figure 8-1. Overview of Rabbit Memory Mapping

8.1 Memory-Mapping Unit

The 64K 16-bit address space accessed by processor instructionsis divided into segments.
Each segment has alength that isamultiple of 4K. Except for the extended code segment,
the segments have adjustable sizes and some segments can be reduced to zero size and
thus vanish from the memory map.

The four segments are shown in the example in Figure 8-2. The segment size register
(SEGSIZE) determines the boundaries marked in the diagram. The extended code seg-
ment always occupies the addresses OEOOOh-OFFFFh. The stack segment stretches from
the address specified by the upper 4 bits of the SEGSIZE register to ODFFFh. For exam-
ple, if the upper 4 bits of SEGSIZE are ODh, then the stack segment will occupy 0D00Oh—
ODFFFh, or 4K. If the upper 4 bits of SEGSIZE are greater than or equal to OEh, the stack
segment vanishes. If these bits are set to zero, the two segments below the stack segment
will vanish.

The lower 4 bits of SEGSIZE determine the lower boundary shown in the figure. If this
boundary isequal to the upper boundary or greater than OEh, the data segment will vanish.
If this segment is placed at zero the code segment will vanish.
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64K

Extended code
XPC segment (8K)
Boundary SEGSIZE[4..7] $ \
Stack segment
(4K typ)
Boundary SEGSIZEJO0..3] i
\Data segment
XPC
STACKSEG
DATASEG - Root segment
00 0K
+ 16-bit address
20-bit address

Figure 8-2. Memory Segments

The memory management unit accepts a 16-bit address from the processor and translates
it into a 20-bit address. The procedure to do this works as follows.

1. It is determined which segment the 16-bit address belongs to by inspecting the upper 4
bits of the address. Every address must belong to one of the possible 4 segments.

2. Each segment has an 8-bit segment register. The 8-bit segment register is added to the
upper 4 bits of the 16-bit addressto create a 20-bit address. Wraparound occurs if the
addition would result in an address that does not fit in 20 bits.

Table 8-1. Segment Registers

Segment Register

Function

XPC

L ocates extended code segment in physical memory. Read and written
by processor instructions: Id a,xpc, Id xpc,a, Icall, Iret, |jp

STACKSEG = 11h

Locates stack segment in physical memory.

DATASEG = 12h L ocates data segment in physical memory.
Table 8-2. Segment Size Register
Bits 7..4 Bits 3..0
SEGSIZE = 13h Boundary address stack segment. |Boundary address data segment.
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8.2 Memory Interface Unit

The 20-bit memory addresses generated by the memory-mapping unit feed into the mem-
ory interface unit. The memory interface unit has a separate write-only control register
(see Table 8-3) for each 256K quadrant of the 1M physical memory. This control register
specifies how memory access requests to that quadrant are to be dispatched to the memory
chips connected to the Rabbit. There are three separate chip select output lines (/CS0,
/CS1, and /CS2) that can be used to select one of three different memory chips. A field in
the control register determines which chip select is selected for memory accesses to the
quadrant. The same chip select line may be accessed in more than one quadrant. For
example, if a512K RAM isinstalled and is selected by /CS1, it would be appropriate to
use /CS1 for accesses to the 3rd and 4th quadrants, thus mapping the RAM chip to
addresses 80000h to OFFFFFh.

User’s Manual 91



8.3 Memory Control Unit Registers

The Memory Bank Control Registers manage the physical memory space for the Rabbit
2000. There are four memory banks, where each bank is selected by the two most signifi-
cant bits of the 20-bit physical memory address. Each memory bank can be programmed to
have zero, one, two, or four wait states added automatically, and writes can be disabled or
enabled for each bank. The Rabbit 2000 chip has three memory chip selects, two memory
output enables, and two memory write enables. Any of these signals can be selected for
any memory bank. The final option available for each memory bank isto invert either or
both of the two most significant address bits while accessing a memory bank. This allows
each bank to contain four 256K byte pages, only one of which is available at atime.

In revisions A—C of the Rabbit 2000 chip, the reset state of the MBOCR register is set to
inhibit /WEQ. See Section B.2.6 for more information.

8.3.1 Memory Bank Control Registers

Table 8-3 describes the operation of the four memory bank control registers. The registers
are write-only. Each register controls one quadrant in the 1M address space.

Table 8-3. Memory Bank Control Register x (MBxCR=14h+x)

Bits 7,6 Bit 5 Bit 4 Bit 3 Bit 2 Bits 1,0

00—4 wait states .

. l1—Invert |l1—Invert |1—Write- 00—use /CS0
01—2 wait states O—use/OEQ, /WEQ

. address address protect memory 01—use /CS1
10—1 wait states . 1—use/OEL, /IWE1

X A19 A18 this quadrant Ix—use /CS2
11—0 wait states

» Bits7,6—The number of wait states used in access to this quadrant. Without wait
states, read requires 2 clocks and write requires 3 clocks. The wait state adds to these
numbers. Wait states should only be used for memory data accesses (RAM or data
flash), not for memory from which instructions are executed (code memory).

» Bits5, 4—These bitsallow the upper address linesto beinverted. Thisinversion occurs
after the logic that selects the bank register, so setting these lines has no effect on which
bank register is used. The inversion may be used to install a 1M memory chip in the
space normally allocated to a 256K chip. The larger memory can then be accessed as 4
pages of 256K each. Thereis no effect outside the quadrant that the memory bank con-
trol register is controlling.

* Bit 3—Inhibits the write pulse to memory accessed in this quadrant. Useful for protect-
ing flash memory from an inadvertent write pulse, which will not actually write to the
flash because it is protected by lock codes, but will temporarily disable the flash mem-
ory and crash the system if the memory is used for code.

* Bit 2—Selects which set of the two lines /OEx and /WEXx will be driven for memory
accesses in this quadrant.

e Bits 1,0—Determines which of the three chip select lines will be driven for memory
accesses to this quadrant.
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« All bits of the control register areinitialized to zero on reset.
8.3.2 MMU Instruction/Data Register

8.3.2.1 Instruction and Data Space Support

Support for Instruction and Data space (I and D space) support was added in revisions A—C
by optionally inverting address lines A16 and/or A19 when the processor accesses D
space, but not inverting those lines when the processor accesses | space. The MMIDR reg-
ister isused to control thisinversion. Refer to Section B.2.5 for more information on using
| and D space on the Rabbit 2000 chip. More information on separate | and D implementa-
tion will be available in the Rabbit 2000 Designer’s Handbook, and is currently available
in the Rabbit 3000 Designers Handbook.

8.3.2.2 /CS1 Enable

The optional enable of /CS1 isvaluable for systems that are pushing the access time of
battery-backed RAM. By enabling /CSL1, the delay time of the switch that forces /CS1
high when power is off can be bypassed. This feature increases power consumption since
the RAM is always enabled and its access is controlled normally by /OEL. Thisoptionis
enabled by setting bit 4 in the MMIDR register. See Section B.2.5 for more information.

8.3.3 Memory Timing Control Register
8.3.3.1 Early Memory Output-Enable Feature

The early 1/0 enable feature was added to the Rabbit 2000C revision to relax the tight tim-
ing requirements for memory access when using the clock spectrum spreader. See
Section B.2.13 for more information.
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8.4 Allocation of Extended Code and Data

The Dynamic C compiler compiles code to root code space or to extended code space.
Root code starts in low memory and compiles upward.

64K

56K
52K

Debug

xcode
window

Stack

\

Variables

Root
code

\

1024K

"

Variables
L

Stacks

: ; —— Available RAM
Q 512K

|

Extended code

Root code and constants

OK

Figure 8-3. Example of Memory Mapping and Memory Usage

Allocation of extended code starts above the root code and data. Allocation normally con-
tinues to the end of the flash memory.

Datavariables are allocated to RAM working backwards in memory. Allocation normally
starts at 52K in the 64K D space and continues. The 52K space must be shared with the
root code and data, and is allocated upward from zero.

Dynamic C also supports extended data constants. These are mixed in with the extended

codein flash.
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8.5 How Compiler Compiles to Memory

The compiler actually generates code for root code and constants and extended code and
extended constants. It allocates space for data variables, but does not generate data bits to
be stored in memory.

In any but the smallest programs, most of the code is compiled to extended memory. This
code executes in the 8K window from EOQ00 to FFFF. This 8K window uses paged access.
Instructions that use 16-bit addressing can jump within the page and also outside of the
page to the remainder of the 64K space. Special instructions, particularly long call, long
jump and long return, are used to access code outside of the 8K window. When one of
thesetransfer of control instructionsis executed, both the address and the view through the
8K window or page are changed. Thisallowstransfer to any instruction in the 1M memory
space. The 8-bit XPC register controls which of the 256 4K pages the 8K window aligns
with. The 16-bit PC controls the address of the instruction, usually in the region EQ0O to
FFFF. The advantage of paged access is that most instructions continue to use 16-bit
addressing. Only when an out-of -range transfer of control is made does a 20-bit transfer of
control need to be made. The beauty of having a 4K minimum step in page alignment
while the size of the pageis 8K isthat code can be compiled continuously without gaps
caused by change of page. When the pageis moved by 4K, the previous end of codeis still
visible in the window, provided that the midpoint of the page was crossed before moving
the page alignment.

Asthe compiler compiles code in the extended code window, it checks at opportune times
to seeif the code has passed the midpoint of the window or FO00. When the code passes
F000, the compiler slides the window down by 4K so that the code at FOOO+x becomes
resident at EOOO+x. Thisresultsin the code being divided into segments that are typically
4K long, but which can very short or aslong as 8K. Transfer of control can be accom-
plished within each segment by 16-bit addressing; 20-bit addressing is required between
segments.

User’s Manual 95



______ FFFF

— L E000

FFFF

B _ | N E000

4K pages Memory View in 8K window each segment

Figure 8-4. Compilation of Code Segments in Extended Memory
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9. PARALLEL PORTS

The Rabbit has five 8-bit parallel ports designated A, B, C, D and E. The pins used for the
parallel ports are also shared with numerous other functions as shown in Table 5-2. The
important properties of the ports are summarized below.

* Port A—Shared with the slave port data interface.

» Port B—Shared with control lines for slave port and clock 1/O for clocked serial mode
option for seria ports A and B.

» Port C—Shared with serial port serial datal/O.

» Port D—4 hits shared with alternate |/O pinsfor serial ports A and B. 4 bits not shared.
Port D has the ability to configure its outputs as open drain outputs. Port D has output
preload registers that can be clocked into the output registers under timer control for
pulse generation. Port D bits 0-3 have a higher current drive capability.

» Port E—AII bits of Port E can be configured as 1/O strobes. 4 bits of port E can be used
as external interrupt inputs. One bit of port E is shared with the slave port chip select.
Port E has output preload registers that can be clocked into the output registers under
timer control for pulse generation.
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9.1 Parallel Port A

Parallel Port A has asingle read/write register.
Table 9-1. Parallel Port A Registers

Register Name Mnemonic I/O address R/W Reset
Port A Data Register PADR 0x30 R/W XXXXXXXX
Slave Port Control Register SPCR 0x24 R/W 0xx00000

Table 9-2. Parallel Port A Data Register Bit Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PADR (R/W)

adr = 030h PA7 PAG PAS PA4 PA3 PA2 PA1 PAO

Thisregister should not be used if the Slave port is enabled.

The slave port control register is used to control whether Parallel Port A isan output or an
input. To make the port an input, store 080h in the SPCR (slave port control register). To

make the port an output, store 084h in SPCR. Parallel Port A is set up as an input port on
reset.

When the port isread, the value read reflects the voltages on the pins, "1" for high and "0"
for low. This could be different than the value stored in the output register if the pinis
forced to a different state by an externa voltage.
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9.2 Parallel Port B

Parallel Port B, shown in Table 9-4, has six inputs and two outputs when used exclusively

asaparalld port.

Table 9-3. Parallel Port B Registers

Register Name Mnemonic I/O address R/W Reset
Port B Data Register PBDR 0x40 R/W OOXXXXXX
Table 9-4. Parallel Port B Data Register PBDR (adr = 040h)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Red | CCN0 |EChO fopgiy pB4in PB3in PB2in | PBLin | PBOIN
drive drive
Write PB7 PB6 X X X X X X

When the dave port is enabled, parallel port lines PB2—-PB7 are assigned to various slave
port functions. However, it is still possible to read PBO-PB5 using the Port B data register
even when lines PB2—PB7 are used for the slave port. It is also possible to read the signal
driving PB6 and PB7 (this signal is on the signaling lines from the slave port logic).

Regardless of whether the slave port is enabled, PBO reflects the input of the pin unless

seria port B hasitsinternal clock enabled, which causesthislineto be driven by the serial
port clock. PB1 reflects the input of the pin unless serial port A hasitsinternal clock

enabled.
On reset the output bits 6 and 7 are reset and the value output on pins PB6 and PB7 (pack-

age pins 99, 100) will aso be low.
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9.3 Parallel Port C

Parallel port C, shown in Table 9-6, has four inputs and four outputs. The even-numbered
ports, PCO, PC2, PC4, and PC6, are outputs. The odd-numbered ports, PC1, PC3, PC5,
and PC7, are inputs. When the dataregister isread, bits 1,3,5,7 return the value of the volt-
age on the pin. Bits 0,2,4,6 return the value of the signal driving the output buffers. The
signal driving the output buffers and the value of the output pin are normally the same.
Either the Port C dataregister isdriving these pins or one of the serial port transmit linesis
driving the pin. The bits set in the PCFR Parallel Port C Function Register identify
whether the dataregister or the serial port transmit lines were driving the pins.

Table 9-5. Parallel Port C Registers

Register Name Mnemonic I/O address R/W Reset
Port C Data Register PCDR 0x50 R/W X0x0x0x0
Port C Function Register PCFR 0x55 w X0x0x0x0

Table 9-6. Parallel Port C Data Register and Function Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
PCDR (1) . Echo . Echo . Echo . Echo
adr = 050h PC7in drive PC5in drive PC3in drive PCLin drive
PCDR (w)
odr = 050h X PC6 X PC4 X PC2 X PCO
PCFR (w) « Drive | Drive | Drive y Drive
adr = 055h TXA TXB TXC TXD

Parallel port C sharesits pins with the four serial ports. The parallel port input pins may
also serve as serial port inputs. (Serial ports A and B can alternately use bits 7 and 5
respectively in Port D asinputs, and the source of the seria port inputs for these serial
ports depends on the setup of the corresponding serial port control register.) When serving
as serial inputs, the data lines can still be read from the parallel port C dataregister. The
parallel port outputs can be selected to be serial port outputs by storing bitsin the corre-
sponding positions of the Port C Function register (PCFR). When aparallel port output pin
is selected to be a serial port output, the value stored in the data register isignored. On
reset the active (even-numbered) function register bits and data register bits are zeroed.
This causes the port to output zeros on the four output bits.
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9.4 Parallel Port D

Parallel port D, shown in Figure 9-1, has eight pinsthat can programmed individually to be
inputs and outputs. When programmed as outputs, the pins can beindividually selected to be
open-drain outputs or standard outputs. Port D pins can be addressed by hit if desired. The
output registers are cascaded and timer-controlled, making it possible to generate precise
timing pulses. In addition, port D outputs have a higher drive capability. Port D bits4 and 5
can be used as alternate bits for serial port B, and bits 6 and 7 can be used as alternate bits
for seria port A. Alternate serial port bit assignments make it possible for the same seria
port to connect to different communications lines that are not operating at the sametime.

Onreset, the datadirection register is zeroed, making all pinsinputs. In addition bitsin the
control register are zeroed (bits 0,1,4,5) to ensure that datais clocked into the output regis-
terswhen loaded. All other registers associated with port D are not initialized on reset.

Table 9-7. Parallel Port D Registers

Register Name Mnemonic I/O address R/W Reset
Port D Data Register PDDR 0x60 R/W XXXXXXXX
Port D Drive Control Register PDDCR 0x66 w XXXXXXXX
Port D Data Direction Register PDDDR 0x67 W 00000000
Port D Function Register PDFR 0x65 w XXXXXXXX
Port D Control Register PDCR 0x64 w xx00xx00
Port D Bit O Register PDBOR 0x68 w XXXXXXXX
Port D Bit 1 Register PDB1R 0x69 w XXXXXXXX
Port D Bit 2 Register PDB2R Ox6A w XXXXXXXX
Port D Bit 3 Register PDB3R 0x6B w XXXXXXXX
Port D Bit 4 Register PDB4R 0x6C w XXXXXXXX
Port D Bit 5 Register PDB5R 0x6D w XXXXXXXX
Port D Bit 6 Register PDB6R Ox6E w XXXXXXXX
Port D Bit 7 Register PDB7R Ox6F w XXXXXXXX

The following registers are described in Table 9-8 and in Table 9-9.

 PDDDR—Parallel port D datadirection register. A "1" makes the corresponding pin an
output. Write only.

» PDDCR—Parallel port D drive control register. A "1" makes the corresponding pin an
open-drain output if that pinis set up for output. Write only.

» PDFR—Parallel port D function control register. This port may be used to make port
positions 4 and 6 be serial port outputs. Write only.
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 PDCR—Parallel port D control register. Thisregister isused to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.
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N PD6
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—
ARXB 4—‘
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-
_] PD4
ATXB
] f -~
_ inputs
1/O Data perclk/2 | . . .
. Driver—optional open drain
Timer Al
Timer B1
Timer B2
PD3
-«
e
-
~ PDO
-
]
perclk/2 — ||
Timer Al
Timer B1
Timer B2

Figure 9-1. Parallel Port D Block Diagram
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Table 9-8. Parallel Port D Registers

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
PDDR (R/W)
adr = 060h PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO
PDDCR (W) out = out = out = out = out = out = out = out =
adr = 066h open open open open open open open open
B drain drain drain drain drain drain drain drain
PDFR (W)
adr = 065N X at TXA |x At TXB |x X X X
PDDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr =067h out out out out out out out out
PDBOR (W
adr =0 Béh) X X X X X X X PDO
PDBI1R (W)
odr = 069h X X X X X X PD1 X
PDB2R (W)
adr = 06Ah X X X X X PD2 X X
PDB3R (W
adr =0 6(Bh) X X X X PD3 X X X
PDB4R (W)
odr = 06Ch X X X PD4 X X X X
PDB5R (W)
adr = 06Dh X X PD5 X X X X X
PDB6R (W
adr =0 6(Eh) X PD6 X X X X X X
PDB7R (W)
odr = 06Fh PD7 X X X X X X X
Table 9-9. Parallel Port D Control Register (adr = 064h)
Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
00—clock upper nibble on pclk/2 00—clock lower nibble on pclk/2
« 01—clock ontimer A1 « 0l1—clock ontimer A1
10—clock ontimer B1 10—clock on timer B1
11—clock on timer B2 11—clock on timer B2
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9.5 Parallel Port E

Parallel port E, shown in Figure 9-2, has eight I/O pinsthat can be individually pro-

grammed as inputs or outputs. Port E has a higher drive than most of the other ports. PE7
is used as the slave port chip select when the slave port is enabled. Each of the port E out-
puts can be configured as an 1/O strobe. In addition, four of the port E lines can be used as
interrupt request inputs. The output registers are cascaded and timer-controlled, making it
possible to generate precise timing pulses.

1/0 Data

/scs

_ 1
perclk/2
Timer Al
Timer B1
Timer B2

PE3

INT1

PEO

]
perclk/2
Timer Al
Timer B1
Timer B2

INTO

Lo s
'

Figure 9-2. Parallel Port E Block Diagram
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Table 9-10. Parallel Port E Registers

Register Name Mnemonic I/O address R/W Reset
Port E Data Register PEDR 0x70 R/W XXXXXXXX
Port E Control Register PECR 0x74 w xx00xx00
Port E Function Register PEFR 0x75 w 00000000
Port E Data Direction Register PEDDR ox77 w 00000000
Port E Bit O Register PEBOR 0x78 w XXXXXXXX
Port E Bit 1 Register PEB1R 0x79 w XXXXXXXX
Port E Bit 2 Register PEB2R Ox7A w XXXXXXXX
Port E Bit 3 Register PEB3R 0x7B w XXXXXXXX
Port E Bit 4 Register PEB4R 0x7C w XXXXXXXX
Port E Bit 5 Register PEB5R 0x7D w XXXXXXXX
Port E Bit 6 Register PEB6R Ox7E XXXXXXXX
Port E Bit 7 Register PEB7R Ox7F w XXXXXXXX

The following registers are described in Table 9-11 and in Table 9-12.

PEDR—Port E dataregister. Reads value at pins. Writes to port E preload register.

PEDDR—Port E data direction register. Set to "1" to make corresponding pin an out-
put. Thisregister is zeroed on reset.

PEFR—Port E function register. Set bit to "1" to make corresponding output an 1/0O
strobe. The nature of the 1/0 strobe is controlled by the 1/0 bank control registers
(IBxCR). The data direction must be set to output for the I/O strobe to work.

PEBXR—These are individual registersto set individual output bits on or off.

PECR—Parallel port E control register. Thisregister is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,

and 5 are reset to zero.
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Table 9-11. Parallel Port E Registers

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
PEDR (R/W)
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PEO
adr = 070h
PEFR (W)
adr = 075h at/17 at /16 at/I5 at/14 at/I13 at/12 at/l11l at/10
PEDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr = 077h out out out out out out out out
PEBOR (W) X X X X X X X PEO
adr = 078h
PEB1R (W
adr = 07(9h) X X X X X X PE1 X
PEB2R (W)
odr = 07Ah X X X X X PE2 X X
PEB3R (W)
adr = 07Bh X X X X PE3 X X X
PEB4R (W
adr = 07(Ch) X X X PE4 X X X X
PEBS5R (W)
odr = 07Dh X X PE5S X X X X X
PEBG6R (W)
adr = 07Eh X PE6 X X X X X X
PEB7R (W)
adr = 07Fh PE7 X X X X X X X
Table 9-12. Parallel Port E Control Register (adr = 074h)
Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
00—clock upper nibble on pclk/2 00—clock lower nibble on pclk/2
« 01—clock on timer A1 « 01—clock on timer Al
10—-clock on timer B1 10—-clock on timer B1
11—clock on timer B2 11—clock on timer B2
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10. I/O BANK CONTROL REGISTERS

The pins of Port E can be set individually to be /O strobes. Each of the eight possible 1/0
strobes has a control register that controls the nature of the strobe and the number of wait
states that will be inserted in the I/O bus cycle. Writes can also be suppressed for any of
the strobes. The types of strobes are shown in Figure 10-1. Each of the eight 1/O strobesis
active for addresses occupying 1/8th of the 64K external 1/0 address space.

T1 Tw T2
_ | ! | | |
ADDR [Z Ai : valid i
writedata g /J7 valid lV 2
write strobe : |7:
read data /:/ Avallle 2,
read strobe : i—
chip select strobe| : —
|
Figure 10-1. External I/O Bus Cycles
Table 10-1 shows how the eight 1/0 bank control registers are organized.
Table 10-1. I/O Bank Control Reg (adr IBXCR = 08xh)
Bits 7,6 Bits 5,4 Bit 3 Bits 2-0
Wait state code N1X strgbe type
11-1 00—chip select
10-3 Ol—readstrobe | I—permitwrite 1, oy
01-7 10—write strobe O—inhibit write
00-15 witesiobe

*  Total number of external 1/0 read/write wait states, including the one wait state

that is always present.
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Compared to memory read/write cycles, which are each 2 or 3 clock cycleslong respectively,
external 1/0 read/write cycles are always at least three clock cycles long.

The eight I/O bank control registers determine the number of 1/0O wait states applied to an
external 1/0 access within the zone controlled by each register even if the associated
strobes are not enabled.

The control over the generation of wait states is independent of whether or not the associ-
ated strobe in Port E isenabled. The upper 2 bits of each register determine the number of
walit states. The four choicesare 1, 3, 7, or 15 wait states. On reset, the bits are cleared,
resulting in 15 wait states. The inhibit write function applies to both the Port E write
strobes and the /IOWR signal.

These control bits have no effect on theinternal 1/0 space, which does not have wait states
associated with read or write access. Internal 1/0 read or write cycles are two clocks long.

The 1/0 strobes greatly simplify the interfacing of external devices. On reset, the upper 5
bits of each register are cleared. Parallel port E will not output these signals unless the
data-direction register bits are set for the desired output positions. In addition, the Port E
function register must be set to "1" for each position.

Each 1/0 bank is selected by the three most significant bits of the 16-bit 1/O address.
Table 10-2 shows the relationship between the 1/0O control register and its corresponding
space in the 64K address space.

Table 10-2. External I/O Register Address Range and Pin Mapping

Control Register | T O/t E losediess | o meeess
Pin A[15:13] Range
IBOCR PEO 000 0x0000-Ox1FFF
IBI1ICR PE1 001 0x2000-0x3FFF
IB2CR PE2 010 0x4000-Ox5FFF
IB3CR PE3 011 0x6000-0x7FFF
IBACR PE4 100 0x8000-0x9FFF
IB5CR PES 101 OxA000-OxBFFF
IB6CR PE6 110 0xCO00-OxDFFF
IB7CR PE7 111 OxEOO00—-OxFFFF

NOTE: Refer to Section 3.3.8 for afix to abug that manifestsitself if an 1/O instruction
(prefix 1 A or | CE) isfollowed by one of 12 single-byte op codes that use HL as an
index register.
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11. TIMERS

There are two timers—Timer A and Timer B. Timer A isintended mainly for generating
the baud clock for the serial ports, a periodic clock for clocking parallel ports D and E, or
for generating periodic interrupts. Timer B can be used for the same functions, but it can-
not generate the baud clock. Timer B is more flexible when it can be used because the pro-
gram can read the time from a continuously running counter and events can be
programmed to occur at a specified future time.

Figure 11-1 shows a block diagram of Timers A and B.

—
] —="
per cl k/2 B
Timer A System [ |_AS
L A
_‘ 10-bit counter
| compare
s J < 10hits [l
Timer B System | Timer_B1
match preload
Timer_B2
—
match preload

Figure 11-1. Block Diagram of Timers A and B
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11.1 Timer A

Timer A consists of five separate countdown timers—A1 and A4-A7—as shown in
Figure 11-1.

Timers Al and A4-A7 are 8-bit countdown registers as shown in Figure 11-2. The reload
register can contain any number in the range from 0 to 255. The counter divides by (n+1).
For example, if the reload register contains 127, then 128 pulses enter on the left before a
pulse exits on the right. If the reload register contains zero, then each pulse on the left
resultsin a pulse on theright, that is, there is division by one.

¢

8-hit reload register

¢

Clock i [oad
ﬂ‘ 8-bit down counter

pulse on zero count out

Input clock [ [ 1 1
Count value 2 2 1 1 0 0 N N-1

Outputpulse [ 1

Figure 11-2. Reload Register Operation

Thetimer systems are driven by the peripheral clock divided by two. Thisclock is always
the same as the processor clock, or it isfaster than the processor clock by afactor of eight.
The output pulses are aways one clock long. Clocking of the counters takes place on the
negative edge of this pulse. When the counter reaches zero, the reload register isloaded on
the next input pulse instead of a count being performed. The reload registers may be
reloaded at any time since the periphera clock is synchronous with the processor clock.

Timers A4, A5, A6 and A7 always provide the baud clock for seria ports A, B, Cand D
respectively. Except for very low baud rates, clock A1 does not need to be used to prescale
theinput clock for timers A4—A7. For example, if the system clock is11.0592 MHz, and if
the timer A4 divides by 144, an asynchronous baud rate of 2400 bps can be achieved in one
step. The clock input to the serial port must be 16 times the baud rate for asynchronous
mode and 8 times the baud rate for synchronous mode. The maximum asynchronous baud
rate with a 11.0592 MHz clock would be (11,059,200/(2* 16) = 345,600.

Each of the five countdown registersin timer A can cause an interrupt. There is one inter-
rupt vector for timer A and a common interrupt priority. A common status register
(TACSR) has abit for each timer that indicates if the output pulse for that timer has taken
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place since the last read of the status register. When the status register is read, these bits
are cleared. No bit will belost. Either it will be read by the status register read or it will be
set after the status register read iscomplete. If abit ison and the corresponding interrupt is
enabled, an interrupt will occur when priorities allow. However, a separate interrupt is not
guaranteed for each bit with an enabled interrupt. If the bit is read in the status register, it
is cleared and no further interrupt corresponding to that bit will be requested. It ispossible
that one bit will cause an interrupt, and then one or more additional bits will be set before
the status register is read. After these bits are cleared, they cannot cause an interrupt. 1f
any bits are on, and the corresponding interrupt is enabled, then the interrupt will take
place as soon as priorities allow. However, if the bit is cleared before the interrupt is
latched, the bit will not cause an interrupt. The proper rule to follow is for the interrupt
routine to handle all bitsthat it sees set.

11.1.1 Timer A I/O Registers
The l/O registersfor Timer A arelisted in Table 11-1.

Table 11-1. Timer A I/O Registers

Register Name Register Mnemonic | I/O address (hex) | R/W
Timer A Control/Status Register TACSR A0 R/W
Timer A Control Register TACR A4 W
Timer A1 Time Constant 1 Register TATIR A3 W
Timer A4 Time Constant 4 Register TAT4R A9 W
Timer A5 Time Constant 5 Register TAT5R AB W
Timer A6 Time Constant 6 Register TAT6R AD W
Timer A7 Time Constant 7 Register TAT7R AF W

The control/status register for Timer A (TACSR) islaid out as shown in Table 11-2.

Table 11-2. Timer A Control and Status Register (adr = 0A0h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 | Bit 2 Bit 1 Bit 0
A7 count A6 count A5 count A4 count A1l count Thishitis
Read 0 0 X
done done done done done write only.
Write A7interrupt | A6interrupt | ASinterrupt | Adinterrupt X Alinterrupt | 1—enable
enable enable enable enable enable Timer A

Bits 1, 4—-7—Read/write, terminal count reached on timers A1 and A4-A7. Reading this
status register clears any bits (bits 1 and 4—7) that are on. Writing to these bits enables the
interrupts for the corresponding timer.

Bit 0—Write, set to a"1" to enable the clock (perclk/2) for Timer A, set to "zero" to dis-
able the clock (perclk/2 in Figure 11-1). Bits 1 and 4—7 are written (write only) to enable
the interrupt for the corresponding timer.
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The control register (TACR) islaid out as shown in Table 11-3.

Table 11-3. Timer A Control Register (adr = 0A4h)

Bit 7 Bit 6 Bit 5 Bit 4 Bits 3, 2 Bits 1,0
A7 A6 A5 A4
Source A7 | Source A6 | Source A5 | Source Ad not sed gg_g;:&iptr?ﬁblidi nterruot
0-pclk/2 O-pclk/2 O-pclk/2 O-pclk/2 . P . y . P
ignored 10—Enable priority 2 interrupt
1-Al 1-Al 1-Al 1-Al L .
11—Enable priority 3 interrupt

The time constant register for each timer is simply an 8-bit data register holding a number
between 0 and 255. The time constant registers are write only.

11.1.2 Practical Use of Timer A

Timer A isdisabled (bit O in control and status register) on power-up. Timer A isnormally
set up while the clock is disabled, but the timer setup can be changed while the timer is
running when there is a need to do so. Timers that are not used should be driven from the
output of A1 and the reload register should be set to 255. Thiswill cause counting to be as
slow as possible and consume minimum power.

Timer A hasfive separate subtimer units, Al and A4-A5, that are also referred to astimers.

Most likely, if aserial port is going to be used and atimer is needed to provide the baud
clock, that timer will be set up to be driven directly from the clock, and the interrupt asso-
ciated with that timer will be disabled. (Serial port interrupts are generated by the serial
port logic.)

The value in the reload register can be changed while the timer is running to change the
period of the next timer cycle. When the reload register isinitialized, the contents of the
countdown counter may be unknown, for example, during power-up initialization. If inter-
rupts are enabled, then the first interrupt may take place at an unknown time. Similarly, if
the timer output is being used to drive the clock for aparallel port or serial port, the first
clock may come at arandom time. If a periodic clock isdesired, it is probably not impor-
tant when the first clock takes place unless a phase relationship is desired relative to a dif-
ferent timers.

A phase relationship between two timers can be obtained in several ways. One way isto
set both reload registers to zero and to wait long enough for both timers to reload (maxi-
mum 256 clocks). Then both timers' reload registers can be set to new values before or
after both are clocked.
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11.2 Timer B
Figure 11-1 shows a block diagram of Timer B.

Themain clock for Timer B isPCLK/2. Bit O of the TBCSR register controls the main clock
for Timer B. The Timer B counter can be driven directly by PCLK/2, PCLK/16 [(PCLK/2)/8],
or by the output of Timer A1. Thefirst two options are controlled by bit 0 in TBCSR. The
third option has to be enabled or disabled through bit O of the TACSR register.

Timer B has a continuously running 10-bit counter. The counter is compared against two
match registers, the B1 match register and the B2 match register. When the counter transi-
tions to avalue equal to a match register, an internal pulse with alength of 1 peripheral
clock isgenerated. The match pulse can be used to cause interrupts and/or clock the output
registers of parallel ports D and E.

There are two ways to set up the Timer B match registers for use, one just after power-up,
and one for after using the Timer B match register system.

After power-up or reset, the value in the TBLXR match register isflagged as "invalid.” At
this time avalue written to the holding register will be transferred to the match register on
the next rising edge of the Timer B clock. Once the value is loaded in the match register,
an internal flag will indicate that avalid value is present in the match register. If another
value is written to the same register, it will stay in the holding register. Once a match
occurs, the value in the TBLXR match register isflagged as “invalid.” At that time, if a
valueisin the holding register, it will get transferred to the match register, assuming that
the Timer B clock isrunning.

Every time amatch condition occurs, the processor sets an internal bit that marks the match
valuein TBLXR asinvalid. Reading TBCSR clears the interrupt condition. TBLXR must
be reloaded to re-enable the interrupt. TBMXR does not need to be reloaded every time.

If both match registers need to be changed, the most significant byte needs to be changed first.
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The Timer B 1/O registersare listed in Table 11-4.

Table 11-4. Timer B Registers

Register Name Mﬁeegniwsotﬁirc Adg(rzess R/W on TR;.\set
(hex)
Timer B Control/Status Register TBCSR BO R/W | xxxxx000
Timer B Control Register TBCR B1 w XXXXXX00
Timer B MSB 1 Reg TBM1R B2 X
Timer BLSB 1 Reg TBL1R B3 W X
Timer B MSB 2 Reg TBM2R B4 W X
Timer BLSB 2 Reg TBL2R B5 \W X
Timer B Count MSB Reg TBCMR BE R X
Timer B Count LSB Reg TBCLR BF R X

The control/status register for Timer B (TBCSR) islaid out as shown in Table 11-5.

Table 11-5. Timer B Control and Status Register (TBCSR) (adr = 0BOh)

Bits 7:3 Bit 2 Bit 1 Bit 0

1—A match with match 1—A match with match
register 2 was detected. register 1 was detected.

Thisbit is cleared when Thisbit is cleared when 1—Enable the main clock
Not used

this register is read; thisregister is read; for this timer.
setting this bit to 1 enables | setting this bit to 1 enables
the interrupt. the interrupt.

The control register for Timer B (TBCR) islaid out as shown in Table 11-6.

Table 11-6. Timer B Control Register (TBCR)

Bits 7:4 Bits 3:2 Bits 1:0

00—Counter clocked by perclk/2
Not used 01—Counter clocked by output of timer Al
1x—Timer clocked by perclk/2 divided by 8

00—Interrupt disabled
XX—Interrupt priority xx enabled.

The MSB x registersfor Timer B (TBM1R/TBMZ2R) are laid out as shown in Table 11-7.

Table 11-7. Timer B MSB x Register (TBM1R/TBM2R = 0B2h/0B4h)

Bits 7:6 Bits 5:0

Two most significant bits of timer

match preload register. Not used.
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11.2.1 Using Timer B

Normally the prescaler is set to divide PCLK/2 by a number that provides a counting rate
appropriate to the problem. For example, if the clock is22.1184 MHz, then PCLK/2 is
11.0592 MHz. A Timer B clock rate of 11.0592 MHz will cause a complete cycle of the
10-bit clock in 92.6 ps.

Normally an interrupt will occur when either of the comparatorsin Timer B generates a
pulse. The interrupt routine must detect which comparator is responsible for the interrupt
and dispatch the interrupt to a service routine. The service routine sets up the next match
value, which will become the match value after the next interrupt. If the clocked parallel
ports are being used, then a value will normally be loaded into some bits of the parallel
port register. These bits will become the output bits on the next match pulse. (It is neces-
sary to keep a shadow register for the parallel port unless the bit-addressable feature of
ports D and E isused.)

If it isdesired to read the time from the Timer B counter, either during an interrupt caused
by the match pulse or in some other interrupt routine asynchronous to the match pulse, a
special procedure needs to be used to read the counter because the upper 2 bitsarein a dif-
ferent register than the lower 8 bits. The following method is suggested.

1. Read the lower 8 hits.

2. Read the upper 2 bits

3. Read the lower 8 bits again
4

. If bit 7 changed from 1 to O between the first and second read of the lower 8 bits there
has been a carry to the upper 2 bits. In this case read the upper 2 bits again and decre-
ment those 2 bits to get the correct upper 2 bits. Use the first read of the lower 8 bits.

This procedure assumes that the time between reads can be guaranteed to be less than 256
counts. This can be guaranteed in most systems by disabling the priority 1 interrupts,
which will normally be disabled in any case in an interrupt routine.

It isinadvisable to disable the high-priority interrupts (levels 2 and 3) asthat defeats their
purpose.

If speed iscritical, the three reads of the registers can be performed without testing for the
carry. The three register values can be saved and the carry test can be performed by a
lower priority analysis routine. Since the upper 2 bitsare in the register TBCMR at
address OBEh, and the lower 8 bitsarein TBCLR at address OBFh, both registers can be
read with asingle 16-bit 1/0O instruction. The following sequence illustrates how the regis-
ters could be captured.

; enter fromexternal interrupt on pulse input transition
; 19 clocks latency plus 10 cl ocks interrupt execution

push af ; 7
push hl
ioi Id a, (TBCLR) ; 11 get lower 8 bits of counter

ioi Id hl,(TBCWR) ; 13 get |=upper, h=lower
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Timer B can be used for various purposes. The 10-bit counter can be read to record the
time at which an event takes place. If the event creates an interrupt, the timer can be read
in the interrupt routine. The known time of execution of the interrupt routine can be sub-
tracted. The variable interrupt latency isthen the uncertainty in the event time. This can be
aslittle 19 clocks if the interrupt is the highest priority interrupt. If the system clock is 20
MHz, the counter can count as fast as 10 MHz. The uncertainty in a pulse width measure-
ment can be nearly aslow as 38 clocks (2 x 19), or about 2 usfor a20 MHz system clock.

Timer B can be used to change a parallel port output register at a particular specified time
in the future. A pulse train with edges at arbitrary times can be generated with the restric-
tion that two adjacent edges cannot be too close to each other since an interrupt must be
serviced after each edge to set up the time for the next edge. This restriction limits the
minimum pulse width to about 5 us, depending on the clock speed and interrupt priorities.
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12. RABBIT SERIAL PORTS

Two features related to asynchronous and clocked serial communication were added to the
Rabbit 2000 seria port hardware in revisions A—C to improve and simplify asynchronous
serial and clocked serial communication. See Section B.2.3 for more information.

The Rabbit has four on-chip serial ports designated A, B, C, and D. All the ports can perform
asynchronous serial communications at high baud rates. Ports A and B have the additional
capabilities of being able to operate as clocked ports and of being switchable to aternate 1/O
pins. Port A has the special capability of being usable to perform a cold boot of the micropro-
Cessor system.

Figure 12-1 shows a block diagram of the serial ports.

| CLKA
Input to timers |Timer A4 Serial Port A > X

— RX
per cl k/2 or Alternate 1/0

per cl k/2 | CLKB

prescal ed T
Timer A5 Serial Port B - X

TR
——————— Alternate 1/O

Timer A6 Serial Port C ——» Tx
44— RX

Timer A7 Serial Port D——» 1X
<« RXx

Figure 12-1. Block Diagram of Rabbit Serial Ports

Theindividual serial ports are capable of operating at baud rates in excess of 500,000 bps
in the asynchronous mode, and 8 times faster than that in the synchronous mode. Either 7
or 8 data bits may be transmitted and received in the asynchronous mode. The so-called
"9th" bit or address bit mode of operation is also supported. Parity and multiple stop bits
are not directly supported by the hardware, but may be accomplished with suitable pro-
gramming techniques.
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12.1 Serial Port Register Layout

Figure 12-2 shows afunctional block diagram of a serial port. Each serial port has a data

register, a control register and a status register. Writing to the data register starts transmis-
sion. If thewriteis performed to an aternate data register address, the extra address bit or
9th bit is sent. When data bits have been received, they are read from the dataregister. The
control register is used to set the transmit and receive parameters. The status register may
be tested to check on the operation of the serial port.

Read Data Write Data
" Alt Data Out '
Data In Reg Data Out Reg | (for 9th bit)
T i‘____i_JJ
Input Shift Reg Output Shift Reg

Rx serial datain )
Tx serial data out

Bit 0 1 2 3 4 5 6 7 stop

@_‘_l L 1 T ] Transmitting 0D6h
0O 1 1 0 1 0 1 1 \

Sart Bit Stop Bit
Bit 0 1 2 3 4 5 6 7 A stop o
Transmtting 0D6h

@_A_/ I B with 9th address bit
0 11 01 0 1 1 \\

Sart Bit
9th bit Stop Bit

Signals Shown At Microprocessor Tx pin

Figure 12-2. Functional Block Diagram of a Serial Port

The clock input to the serial port unit must be 16 times the baud rate in the asynchronous
mode and 2 times the baud rate for the clocked serial mode when the internal clock is
used. Timers A4—A7 supply the input clock for Serial Ports A—D. These timers can divide
the frequency by any number from 1 to 256 (see Chapter 11). The input frequency to the
timers can be selected in different ways described in the documentation for the timers.
One choice isthe peripheral clock divided by 2—with that choice and a well-chosen crys-
tal frequency for the main oscillator, the most commonly used baud rates can be obtained
down to approximately 2400 bps at the highest Rabbit clock frequencies (see Section A.4
in Appendix A).
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Table 12-1 lists the serial port registers.
Table 12-1. Serial Port Registers

. Address xx =00, 01, 10, 11 : _
Register for A, B, C, D Mnemonic x = A, B, C, D

Data Register 11xx0000 SxDR

Alternate Data Register to

Send 9th (8th) Address Bit 11xx0001 SXAR

Long Stop Register” 11xx0010 SXLR

Status Register (read, write

to clear transmit IRQ) 11xx0011 SR

Control Register (write only) 11xx0100 SXCR

* Extrastop bit is supported in revisions A—C of the Rabbit 2000 chip viathis register.

Table 12-2 describes the serial port status registers.
Table 12-2. Serial Port Status Registers (adr = 11xx0011, xx = A,B,C,D)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1,0
Receiver Transmitter
ready (there . Receive Transmitter
. . 9th bit data . :
isabytein . buffer 0 s issendinga | 0,0

. received register is

the receive overrun full byte
data register)

Writing to the status register clears the transmit interrupt request FF, but has no other effect.

Bit 7—Receiver ready. This hit is set when a byte is transferred from the receiver shift regis-
ter to the receiver dataregister. The bit is cleared when the receiver data register is read.
Thetransition from "0" to "1" sets the receiver interrupt request flip-flop.

Bit 6—Address bit or 9th (8th) bit. Thisbit is set if the character in the receiver data register
has a 9th (8th) bit. This bit is cleared and should be checked before reading a data register
since anew datavalue with a new address bit may be loaded immediately when the data
register isread.

Bit 5—Thishit is set if the receiver isoverrun. This happensif the shift register and the data reg-
ister arefull and astart bit is detected. Thishit iscleared when thereceiver dataregister isread.

Bit 3—Transmitter data buffer full. This bit is set when the transmit dataregister is full, that
is, abyteiswritten to the serial port dataregister. It is cleared when abyteistransferred to
the transmitter shift register or awrite operation is performed to the serial port statusregis-
ter. This bit will request an interrupt on the transition from 1 to O if interrupts are enabl ed.

Bit 2—Transmitter busy bit. This bit is set if the transmitter shift register is busy sending
data. It is set on the falling edge of the start bit, which is aso the clock edge that transfers
datafrom the transmitter dataregister to the transmitter shift register. The transmitter busy
bit is cleared at the end of the stop bit of the character sent. This bit will cause an interrupt
to be latched when it goes from busy to not busy status after the last character has been
sent (there are no more data in the transmitter data register).

Bits 0,1,4—Always read as zero.

User’s Manual 119



Table 12-3 describes the serial port control registers.

Table 12-3. Serial Port Control Registers (adr = 11xx0100, xx = A,B,C,D)

Bit 7,6

Bit 5,4

Bit 3,2

Bit 1,0

00—no op
01—receive 1 byte
clocked mode (A,B)
10—send one byte
clocked mode (A,B)

11—reserved for future
use

00—use port C for serial
input

01—use port D for serial
input

1x—disable receiver
input

00—async mode, 8 bits
01—async mode 7 bits
10—clocked mode
external clock (A,B)

11—clocked mode
internal clock (A,B)

00—no interrupt

01— priority 1 interrupt
10—priority 2
11—vpriority 3

Bits 7,6—In asynchronous mode, always store zero in these bits. For Ports A and B, if the
clocked serial mode is enabled, store the code here to start an operation, either receive or
send. If theclock isinternal, aburst of 8 clockswill drivethe clock line. In external mode,
the receiver or transmitter waits for an externally supplied burst of 8 clocks.

Bits 5,4—This enables the standard or alternate pins for the ports. The paralel port output
function for the specified Tx pin becomes disabled when the port is enabled. The settings
in the parallel port C function register (PCFR) and the parallel port D function register
(PDFR) are used to enable the Port C and Port D serial outputs (see Section 9.3, “Parallel
Port C,” and Section 9.4, “Parallel Port D,” for more details).

Bits 3,2—This sets the mode of operation. Modes 10 and 11 apply only to Ports A and B.
Bits 1,0—These bits enable interrupts and set the interrupt priority.
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12.2 Serial Port Interrupt

A common interrupt vector is used for the receive and transmit interrupts. There is a sepa-
rate interrupt request flip-flop for the receiver and transmitter. If either of these flip-flops
isset, aserial port interrupt is requested. The flip-flops are set by arising edge only. The
flip-flops are cleared by a pulse generated by an I/O read or write operation as shown in
Figure 12-3. When an interrupt isrequested, it will take placeimmediately when priorities
allow and an instruction execution is complete. Theinterrupt islost if the request flip-flop
is cleared before the interrupt takes place. If the flip-flop is not cleared in the interrupt,
another interrupt will take place when priorities are lowered.

Transmitter IRQ

I
Transmitter Dafa Request Interrupt
Buffer Empty or |
Transmitter not Busy Write Transmitier
Data Register or .
Write Status Register RECEIVEr |RQ
I
Receiver Dafa
Buffer Full |
Read Receiver Data
Register

Figure 12-3. Generation of Serial Port Interrupts

The receive interrupt request flip-flop is set after the stop bit is sampled on receive, nomi-
nally 1/2 of the way through the stop bit. Data bits are transferred on this same clock from
the receive shift register to the receive data register.

The transmit interrupt request flip-flop is set on the leading edge of the stop bit for data
register empty and at the trailing edge of the stop bit for shift register empty (transmitter
idle). Unless the data register is empty on thistrailing edge of the stop bit, the transmitter
does not becomeidle. The transmitter becomesidle only if the dataregister isempty at the
trailing edge of the stop bit.

The seria port interrupt vectors are shown in Table 7-10.
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12.3 Transmit Serial Data Timing

On transmit, if the interrupts are enabled, an interrupt is requested when the transmit regis-
ter becomes empty and, in addition, an interrupt occurs when the shift register and trans-
mit register both become empty, that is, when the transmitter becomes idle. When the
transmit dataregister contains data and the shift register finishes sending data, the data bits
are clocked from the transmit register to the shift register, and the shift register is never
idle. The interrupt request is cleared either by writing to the data register or by writing to
the status register (which does not affect the status register). The dataregister normally is
clocked into the shift register each time the shift register finishes sending data, leaving the
dataregister empty. This causes an interrupt request. The interrupt routine normally
answers the interrupt before the shift register runs dry (9 to 11 baud clocks, depending on
the mode of operation). The interrupt routine stores the next data item in the data register,
clearing the interrupt request and supplying the next data bits to be sent. When all the
characters have been sent, the interrupt service routine answers the interrupt once the data
register becomes empty. Since it has no more data, it clearstheinterrupt request by storing
to the status register. At this point the routine should check if the shift register is empty;
normally it won't be. If it is, because the interrupt was answered late, the interrupt routine
should do any final cleanup and store to the status register again in case the shift register
became empty after the pending interrupt is cleared. Normally, though, the interrupt ser-
vice routine will return and there will be afinal interrupt to give the routine a chance to
disable the output buffers, asin the case for RS-485 transmission.

12.4 Receive Serial Data Timing

When the receiver isready to receive data, afalling edge indicates that a start bit must be
detected. Thefalling edge is detected as adifferent Rx input between two different clocks,
the clock being 16x the baud rate. Once the start bit has been detected, data bits are sam-
pled at the middle of each data bit and are shifted into the receive shift register. After 7 or
8 data bits have been received, the next bit will be either a 9th (8th) address bit, or a stop
bit will be sampled. If the Rx lineislow, itisan address bit and the address bit received bit
in the status register will be enabled. If an address bit is detected, the receiver will attempt
to sample the stop bit. If thelineis high when sampled, it is a stop bit and a new scan for a
new start bit will begin after the sample point. At the same time, the data bits are trans-
ferred into the receive data register and an interrupt, if enabled, is requested.

Onreceive, an interrupt is requested when the receiver dataregister has data. This happens
when data bits are transferred from the receive shift register to the data register. Thisaso
sets bit 7 of the status register. The interrupt request and bit 7 are cleared when the data
register isread.

Aninterrupt isrequested if bit 7 ishigh. The interrupt is requested on the edge of the trans-
mitter data register becoming empty or the transmitter shift register becoming empty. The
transmitter interrupt is cleared by writing to the status register or to the data register.

On receive, the scan for the next start bit starts immediately after the stop bit is detected.
The stop bit is normally detected at a sample clock that nominally occurs in the center of
the stop bit. If thereis a 9th (8th) address bit, the stop bit follows that bit.
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12.5 Clocked Serial Ports

See Section B.2.3 for moreinformation for more information about a new feature added to

revisions A—C to better support full-duplex communication.

Ports A and B can operate in clocked mode. The data line and clock line are driven as

shown in Figure 12-4. The data and clock are provided as 8-bit bursts. The transmit shift
register advances on the falling edge of the clock. The receiver sasmplesthe dataon theris-
ing edge of the clock. The serial port can generate the clock or the clock can be provided

externally.
Serial Port
nnnnnnnWqgﬂqqqnnnnnnnnnnnnnnnnnf Input Clock L
8 clocks
B [ L ]
\/ . stop bit
start bit sampling
point Receiver Data _ [
Ready Bit
Asynchronous Receive
l L _
Transmitter Data Reg Full ——

Asynchronous Transmit

Bit O Bit 7

o 7 L [T 1[I SCLK

Synchronous Receive/Transmit

(Transmit clock is input clock/2)

Figure 12-4. Serial Port Synchronization
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Table 12-4 lists the synchronous serial port signals.

Table 12-4. Synchronous Serial Port Signals

Rabbit

Signal Names Pin Function

CLKA or CLKB Seria Clock

TxA or TxB on Paralldl Port

CATXA or ATB on Parallel Port D | D@ Transmit

RxA or RxB on Pardléel Port C

ARXA or ARXB on Parallel Port p | D2 Recaive

To enable the clocked serial mode, a code must be in bits (3,2) of the control register,
enabling the clocked serial mode with either an internal clock or an external clock. The
transition between the external and the internal clock should be performed with care. Nor-
mally a pullup resistor is needed on the clock line to prevent spurious clocks while neither
party is driving the clock.

In clocked serial mode the shift register and the data register work in the same fashion as

for asynchronous communications. However, to initiate sending or receiving, a code must
be stored in bits (7,6) of the control register for each byte sent or received. One code spec-
ifies sending a byte, adifferent code specifiesreceiving abyte. The effect of these codesis
different, depending on whether the mode is internal clock or external clock.

To transmit in internal clock mode, the user must first load the data register (which must
be empty) and then store the send code. When the shift register finishes sending the cur-
rent character, if any, the dataregister will be loaded into the shift register and transmitted
by an 8-clock burst. One character can bein the process of transmitting while another
character is waiting in the data register tagged with the send code. The send code is effec-
tively double-buffered.

To receive acharacter in internal clock mode, the receive shift register should beidle. The
user then stores the receive code in the control register. A burst of 8 clocks will be gener-
ated and the sender must detect the clocks and shift output data to the data line on the fall-
ing edge of each clock. The receiver will sample the data on the rising edge of each clock.
The receive mode cannot double-buffer characters when using theinternal clock. The shift
register must be idle before another character receive can be initiated. However, the inter-
rupt request and character ready takes place on the rising edge of the last clock pulse. If
the next receive code is stored before the natural location of the next falling edge, another
receive will beinitiated without pausing the clock. To do this, the interrupt has to be ser-
viced within 1/2 clock.

To transmit each byte in external clock mode, the user must |oad the data register and then
store the send code. When the shift register isidle and the receiver provides a clock burst,
the data bits are transferred to the shift register and are shifted out. Once the transfer is
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made to the shift register, a new byte can be loaded into the transmit register and a new
send code can be stored.

To receive abyte in external clock mode, the user must set the receive code for the first
byte and then store the receive code for the next byte after each byte is removed from the
dataregister. Since the receive code must be stored before the transmitter sends the next
byte, the receiver must service the interrupt within 1/2 baud clock to maintain full-speed
transmission. Thisisusually not practical unlessaflow control arrangement is made or the
transmitter inserts gaps between the clock bursts.

In order to carry on high-speed communication, the best arrangement will usually be for
the receiver to provide the clock. When the receiver provides the clock, the transmitter
should always be able to keep up because it is double-buffered and has a full character
time to answer the transmitter data register empty interrupt. The receiver will answer
interrupts that are generated on the last clock rising edge. If the interrupt can be serviced
within 1/2 clock, there will be no pause in the datarate. If it takes the receiver longer to
answer, then there will be a gap between bytes, the length of which depends on the inter-
rupt latency. For example, if the baud rate is 400,000 bps, then up to 50,000 bytes per sec-
ond could be transmitted, or a byte every 20 ps. No datawill belost if the transmitter can
answer itsinterrupts within 20 ps. There will be no slow down if the receiver can answer
itsinterrupt within 1/2 clock or 1.25 ps. If it can answer within 1.5 clocks, or 2.75 s, the
datarate will slow to 44,444 bytes per second. If it can answer in 2.5 clocks or 6.25 ps, the
datarate slowsto 40,000 bytes per second. If it can answer in 3.5 clocks or 8.75 s, the
datarate will dow to 36,363 bytes per second, and so forth.

If two-way half-duplex communication is desired, the clock can be turned around so that
the receiver always provides the clock. Thisis dlightly more complicated since the
receiver cannot initiate a message. If the receiver attempts to receive a character and the
transmitter is not transmitting, the last bit sent will be received for al eight bits.
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12.6 Clocked Serial Timing
12.6.1 Clocked Serial Timing With Internal Clock

For synchronous serial communication, the serial clock can be either generated by the
Rabbit or by an external device. The timing diagram in Figure 12-5 below can be applied
to both full-duplex and half-duplex clocked serial communication where the serial clock is
generated internally by the Rabbit. With an internal clock, the maximum serial clock rate
isper cl k/4.

CYCLE 1 2 3 4 5 6 7 8
CLKA NN WA WV S WA S A
TXA LSB ) BIT1 } BIT2 )} BIT3 (BIT4 | BIT5 | BIT6 MSB
RXA I’_SB BIT1 ) BIT2 ) BIT3 (BIT4 ) BIT5 ) BIT6) MSB

wewmesone 4 A A A 444

Figure 12-5. Full-Duplex Clocked Serial Timing Diagram with Internal Clock

12.6.2 Clocked Serial Timing with External Clock

In asystem where the Rabbit serial clock is generated by an external device, the clock sig-
nal hasto be synchronized with the internal peripheral clock (per cl k) before data can be
transmitted or received by the Rabbit. Depending on when the external serial clock is gen-
erated, in relation to per cl k, it may take anywhere from 2 to 3 clock cyclesfor the exter-
nal clock to be synchronized with the internal clock before any data can be transferred.
Figure 12-6 shows the timing relationship among per cl k, the external serial clock, and
data transmit.

Figure 12-6. Synchronous Serial Data Transmit Timing with External Clock
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Figure 12-7 shows the timing relationship among per cl k, the external serial clock, and
datareceive. Note that RxA is sampled by the rising edge of per cl k.

perck /. /. /S

CLKA
(Ext.)

RxA | X

X

3
<Va|id

Figure 12-7. Synchronous Serial Data Receive Timing with External Clock

When clocking the Rabbit externally, the maximum serial clock frequency is limited by
the amount of time required to synchronize the external clock with the Rabbit per cl k. If
we sum the maximum number of per cl k cycles required to perform clock synchroniza-
tion for each of the receive and transmit cases, then the fastest external serial clock fre-
guency would be limited to per cl k/6.

12.7 Serial Port Software Suggestions

The receiver and transmitter share the same interrupt vector, but it is possible to make the
receive and transmit interrupt service routines (1SRs) separate by dispatching the interrupt
to either of two different routines. Thisis desirable to make the ISR less complex and to
reduce the interrupt off time. No interrupts will be lost since distinct interrupt flip-flops
exist for receive and transmit. The dispatcher can test the receiver data register full bit to
dispatch. If this bit is on, the interrupt is dispatched for receive, otherwise for transmit.
The receiver recelvesfirst consideration because it must be serviced attentively or data
could be lost.

The dispatcher might look as follows.

i nterrupt:

PUSH AF ; 10

IO LD A (SCSR) ; 7 get status register serial port C

R A ; 2 test sign bit

JP Mreceive ; 7 go service the receive interrupt

JP transm t ; 7 (41 clocks to here) go service transmt interrupt

The individual interrupts would assume that register AF has been saved and the status reg-
ister has been loaded into register A.

The interrupt service routines can, as a matter of good practice and obtaining optimum
performance, remove the cause of the interrupt and re-enable the interrupts as soon as pos-
sible. This keeps the interrupt latency down and allows the fastest transmission speed on
all serial ports.

All the seria portswill normally generate priority level 1 interrupts. In exceptiona circum-
stances, one or more serial ports can be configured to use ahigher priority interrupt. Thereis
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an exception to be aware of when aseria port hasto operate at an extremely high speed. At
115,200 bps, the highest speed of a PC seria port, the interrupts must be serviced in 10 baud
times, or 86 s, in order not to lose the received characters. If al four seria ports were operat-
ing at thisreceive speed, it would be necessary to service the interrupt in lessthan 21.5 psto
assure no lost characters. In addition, the time taken by other interrupts of equal or higher
priority would have to be consdered. A receiver service routine might appear asfollows
below. The byte at buf pt r isused to address the buffer where data bits are stored. It is nec-
essary to save and increment this byte because characters could be handled out of order if
two receiver interrupts take place in quick succession.

receive:

PUSH HL ;10 save hl

PUSH DE ;10 save de

LD HL, STRUCT ;6

LD A, (HL) 5 getin-pointer

LD E, A ; 2 save in pointer in e

I NC HL ; 2 point to out-pointer

CWP A (HL) 5 see if in-pointer=out-pointer (buffer full)
JR Z,roverrun 5 go fix up receiver over run

INC A ; 2 incenent the in pointer

AND A, MASK 4 mask such as 11110000 if 16 buffer |ocs
DEC HL ;2

LD (HL), A ; 6 update the in pointer

IO LD A (SCDR) ; 11 get data register port C, clears interrupt request
| PRES ; 4 restore the interrupt priority

; 68 clocks to here

; to level before interrupt took place

; nmore interrupts could now take place,

; but receiver data is in registers

; now handl e the rest of the receiver interrupt routine
LD HL, BUFBASE ; 6

LD D0 ;6

ADD HL, DE ; 2 location to store data
LD (HL), A ;6 put away the data byte
POP DE 07

POP HL 7

POP AF 7

RET ; 8 frominterrupt

;117 clocks to here

Thisroutine gets the interrupts turned on in about 68 clocks or 3.5 s at a clock speed of
20 MHz. Although two characters may be handled out of order, thiswill beinvisibleto a
higher level routine checking the status of the input buffer because all the interrupts will
be completed before the higher level routine can perform a check on the buffer status.

A typica way to organize the buffersisto have an in-pointer and an out-pointer that incre-
ment through the addresses in the data buffer in a circular manner. The interrupt routine
manipulates the in-pointer and the higher level routine manipulates the out-pointer. If the in-
pointer equals the out-pointer, the buffer is considered full. If the out-pointer plus 1 equals
the in-pointer, the buffer is empty. All increments are done in a circular fashion, most easily
accomplished by making the buffer a power of two in length, then anding a mask after the
increment. The actual memory addressis the pointer plus a buffer base address.
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12.7.1 Controlling an RS-485 Driver and Receiver

RS-485 uses a half-duplex method of communication. One station enables its driver and
sends a message. After the message is complete, the station disables the driver and listens
to theline for areply. The driver must be enabled before the start bit is sent and not dis-
abled until the stop bit has been sent. The transmitter idle interrupt is normally used to dis-
able the RS-485 driver and possibly enable the receiver.

12.7.2 Transmitting Dummy Characters

It may be desired to operate the seria transmitter without actually sending any data. “ Dummy”
characters are transmitted to pass time or to measure time.

The output of the transmitter may be disconnected from the transmitter output pin by manip-
ulating the control registersfor parallel port C or D, which are used as output pins. For
example, if serial port B isto be temporarily disconnected from its output pin, which isbit
4 of parallél port C, this can be done as follows.

1. Storea"1" inbit 4 of the parallel port data output register to provide the quiescent state
of thedriveline.

2. Clear bit 4 of the parallel port C function register so that the output no longer comes
from the seria port. Of course, this should not be done until the transmitter isidle.

A similar procedure can be used if the seria port is set up to use alternate output pins on

port D. Only serial ports A and B can use alternate outputs on parallel port D.

If an RS-485 driver is being used, dummy characters can be transmitted by disabling the
driver after the stop bit has been sent. Thisis an alternative to the above procedure.

12.7.3 Transmitting and Detecting a Break

A break is created when the output of the transmitter is driven low for an extended period.
If abreak isreceived, it will appear as a series of charactersfilled with zeros and with the
9th bit detected low. This could only be confused with alegitimate message if a protocol
using the 9th bit wasin effect. Break is not usually used as a message in such protocols.

A break can be transmitted by transmitting a byte of zeros at avery sow baud rate.
Another and probably better method is to disconnect the transmitter from the output pin,
and usethe parallel port bit to set the line low while sending dummy charactersto time out
the break.

The use of break as a signaling device should be avoided becauseit is slow, erratically sup-
ported by different types of hardware, and usually creates more problems than it solves.

12.7.4 Using A Serial Port to Generate a Periodic Interrupt

A serial port may be used to generate a periodic interrupt by continuously transmitting
characters. Since the Tx output via parallel port C or D can be disabled, the transmitted
characters are transmitted to nowhere. Because the character output path is double-buff-
ered, there will be no gaps in the character transmission, and the interrupts will be exactly
periodic. The interrupts can happen every 9, 10 or 11 baud times, depending on whether 7
or 8 bits are transmitted and on whether the 9th (8th) bit is sent.
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12.7.5 Extra Stop Bits, Sending Parity, 9th Bit Communication Schemes

Some systems may require two stop bits. In some cases, it may be necessary to send a par-
ity bit. Certain systems, such as some 8051-based multidrop communications systems, use
a 9th data bit to mark the start of a message frame. The Rabbit 2000 can receive parity or
message formats that contain a 9th bit without problem. Transmitting messages with par-
ity or messages that always contain a 9th bit is also possible. It is quite easy to do so for
byte formats that use only 7 data bits, in which case the 9th bit or parity bit is actually an
8th bit. Things are alittle bit messy for the transmitter softwareif there are 8 data bits and
a 9th parity or signaling bit is needed. Sending a 9th low bit is supported by hardware.
Sending a 9th bit is easier with revisions A—C of the Rabbit 2000 chip, which have along
stop register as described in Section B.2.3. Sending a 9th bit in the original Rabbit 2000
chip as ahigh value required delaying the transmission of the next character by 1 baud,
effectively providing the 9th bit high and a stop bit, which is the same as two stop bits.

Figure 12-8illustrates the standard asynchronous serial output patterns.

stop bit

] \
start bit data bits oth bit low

Character with 9th bit low stop bit

0 71 7

start bit Character w/o 9th bit low /top bit This format is not

/ sent automatically.

0 7 \ '
L —
. Character w. 9th bit high
start bit g 9th bit high

Signal shown at output pin on processor. A “1” is high.

Figure 12-8. Asynchronous Serial Output Patterns

12.7.5.1 Parity, Extra Stop Bits with 7 Data Bit Characters

If only 7 data bits are being sent, the problem of sending an additional parity or signal bit
iseasily solved by sending 8 bits and always setting bit 7 (the eighth bit) of the byteto "1"
or “0” depending on what isdesired. No special precautions are needed if two stop bitsare
to be received. If parity is received with 7 data bits, receive the data as 8 bits, and the par-
ity will bein the high bit of the byte.
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12.7.5.2 Parity, Extra Stop Bits with 8 Data Bit Characters

In order to receive parity with 8 data bits, a check is made on each character for a 9th bit
low. The 9th bit, or parity bit, islow if bit 6 of the serial port status register issettoa"1"
after the character isreceived. If the 9th bit is not a zero, then the serial port treats it as an
extrastop bit. So if the 9th bit low flag is not set, it should be assumed that the parity bit is
a"l"

No special precautions are necessary to receive extra stop bits, nor does the serial port
check for stop bits beyond one. If the first stop bitismissing, it is treated as a 9th (or 8th)
bit low and will be received as a 9-bit (8-bit) character.

Sending a 9th bit or an extra stop bit is easier with revisions A—C of the Rabbit 2000 chip,
which have along stop register as described in Section B.2.3. It was more difficult to
transmit an extra stop bit or a parity bit of value "1" with the original Rabbit 2000 chip.
The difficulty arose because there is no one solution that applies to every case, although
there isa solution for every case. To send an extra stop bit or parity bit of value "1" using
the original Rabbit 2000 chip, it is necessary to delay sending the next character so that the
stop bit will be extended to alength of at least 2 baud times. In order to delay the next
character by an additional baud time, the program has to wait for the transmitter idle inter-
rupt, which takes place after the data register empty interrupt. The data register ready
interrupt request is terminated by writing to the status register. After the transmitter idle
interrupt, which takes place at the trailing edge of the stop bit, the interrupt routine must
not load the next character for another baud time, for example, 8.6 us at 115,200 bps or
104 ps at 9600 bps. At the highest baud rates it makes sense to use a busy wait loop in the
interrupt routine to time out a baud step before |oading the data register with the next char-
acter. The busy wait loop may be very brief since the delay can be partially made up from
the time used to save the registers on entry to the interrupt and the time used in fetching
the next character to be sent from the transmit buffer. Of course the busy wait loop runs on
the processor clock, which is subject to being throttled up and down, so the loop count
must be coordinated with the current processor speed.

A busy wait loop can still be used at slower baud rates, but then there will be a deleterious
effect on the interrupt latency unlessinterrupts are re-enabled in the interrupt routine. This
can certainly be done provided that the receiver and transmitter interrupts are properly dis-
patched to separate routines because the receiver and transmitter interrupts share the same
interrupt vector. In addition, when interrupts are re-enabled in the interrupt routine, there
must be coordination with the real-time kernel or the operating system (if thereis one).
This coordination typically involves a nesting count of interrupt routines that much be
adjusted by each interrupt routine that re-enablesinterrupts before it returns. If abusy wait
loop is used, it can be expected to consume around 10% of the processors compute time
while characters are being transmitted, since it is doing busy waiting for 1 baud out of 11
baud times for each character sent. Using the transmitter idle interrupt to request the next
character will result in gaps between characters that can be as long as the worst-case inter-
rupt latency. Most applications are not bothered by gaps between characters, but certain
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applications such as Modbus require controlling gaps between characters. Thus, it would
be inadvisabl e to attempt Modbus with parity at a high data rate.

Other ways to add a 1-baud delay are listed below:

» Use another serial port as atimer. Disable the interrupts on the port being used to trans-
mit and, at the same time the data register isloaded, load a dummy character and a Sth
bit in the other serial port. The interrupt in the auxiliary port will occur after 11 baud
times rather than 10 baud times, thus guaranteeing the stop bit its full time.

» Send afull dummy character to create a very long stop bit. To avoid the long stop bit,
the baud timer can be speeded up while the dummy character is sent to reduce the
length of the extra stop bit. The synchronous nature of timers A4-A7 allowsthe divide
ratio to be increased or decreased at will without generating irregular clock pulses.

» Useatimer interrupt to generate the extra 1-baud delay between characters. The inter-
rupts can be enabled for the same timer that was used to generate the baud clock, and
the timer can be slowed down so that one cycle is equal to the delay length needed.

» Useserid ports A and B, which have synchronous capability, to send a character in
synchronous mode (output Tx disabled). The synchronous character is sent at a baud
rate 8 times greater than the asynchronous baud rate, giving an additional baud time.
For thisto work, the pin used for the synchronous clock out (port B bits 0 or 1) must
either be unconnected or connected to something that can tolerate a burst of 8 clock
pul ses.

12.7.6 Supporting 9th Bit Communication Protocols

This section describes how 9th bit communication protocols work. 9th bit communication
protocols are supported by processors such as the 8051 and the Z180, and by companies
such as Cimentrics Technology. The data bytes have an extra 9th bit appended where a
parity bit would normally be placed. Requests from the network master to one of its slaves
consist of aframe of bytes—the first byte has the 9th bit set to "1" (asthe signal is
observed at the Tx pin of the processor) and the following bytes have the 9th bit set to "0."
Thefirst byteisidentified as the address byte, which specifies the slave unit where the
message is directed. This enables a slave to find the start of a message, which isthe byte
with the 9th bit set, and to determine if the message is directed to it. If the messageis
directed to a particular slave, the slave will then read the charactersin the rest of the mes-
sage; otherwise the slave will continue to scan for a start of message character containing
its address.

Normally the 9th bit isset to "1" only on thefirst byte of arequest transmitted by the net-
work master. The subsequent bytes and the slave replies have the 9th bit set to zero. Since
the majority of the traffic has a 9th bit set low, it isonly necessary to stretch the stop bit for
the first bytes or address bytes. This can be done without sacrificing performance by send-
ing adummy character (transmitter disconnected) after the address byte.

Some microprocessor seria ports have a“wake up” mode of operation. In this mode, char-
acters without the 9th bit set to "1" areignored, and no interrupt is generated. When the
start of aframe is detected, an interrupt takes place on that byte. If the byte contains the
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address of the lave, then the “wake up” mode is turned off so that the remaining charac-
tersin the frame can be read. This scheme reduces the overhead associated with messages
directed to other slaves, but it does not really help with the worst-case load. In most cases,
the worst-case compute load is the governing factor for embedded systems. In addition, it
IS quite easy for the interrupt driver to dismiss characters not directed to the system. For
these reasons, the “wake up” mode was not implemented for the Rabbit.

The 9th bit protocols suffer from amajor problem that the IBM-PC uarts can support the
9th bit only by using special drivers.

12.7.7 Rabbit-Only Master/Slave Protocol

If only Rabbit microprocessors are connected, the 9th bit low can be set on the address
byte, and the remaining bytes can be transmitted in the normal 8-bit mode. Thisis more
efficient than other 9th bit protocols because only the first byte requires 11 baud times; the
remaining bytes are transmitted in 10 baud times.

12.7.8 Data Framing/Modbus

Some protocols, for example, Modbus, depend on a gap in the data frame to detect the
beginning of the next frame. The 9th bit protocol is another way to detect the start of adata
frame.

The Modbus protocol requires that data frames begin with a minimum 3.5-character quiet
time. The receiver uses this 3.5-character gap to detect the start of aframe. In order for the
receiving interrupt service routine to detect thisgap, it is suggested that dummy characters
be transmitted to help detect the gap. This can be done in the following manner. The trans-
mitter starts transmitting dummy characters when the first character interrupt is received.
Each time thereis an interrupt, either receiver dataregister full or transmitter data register
empty, adummy character istransmitted if the transmitter dataregister isempty. Although
the transmitter and receiver operate at approximately the same baud rate, there can be a
difference of up to about 5% between their baud rates. Thus the receiver full and transmit-
ter empty interrupts will become out of phase with each other, assuming that the remote
station transmits without gaps between characters. A counter is zeroed each time a charac-
ter isreceived, and the counter isincremented each time a character is transmitted. If this
counter holds (n), thisindicates that a gap has been detected in the frame; the length of the
gapis(n- 1) to (n) characters. The start of frame could be marked by (n) reaching 3, indi-
cating that the existence of a gap at least two characters long.
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13. RABBIT SLAVE PORT

When a Rabbit microprocessor is configured as aslave, paralel port A and certain other
data lines are used as communication lines between the slave and the master. The slave
unit isa Rabbit configured as a lave. The master can be another Rabbit or any other type
of processor. Rabbits configured as slaves can themselves have slaves.

The master and slave communicate with each other viathe slave port. The slave portisa
physical device that includes data registers, a data bus and various handshaking lines. The
dave port isapart of the slave Rabbit, but logically it isan independent device that is used
to communicate between the two processors. A diagram of the slave port is shown in
Figure 13-1.
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2l | /scs CPU
<190 | /SLAVEATTN v,

Figure 13-1. Rabbit Slave Port

The slave port has three data registers for each direction of communication. Three regis-
ters, named SPDOR, SPD1R, and SPD2R, can be written by the master and read by the
slave. Three different registers, also named SPDOR, SPD1R, and SPD2R, can be written
by the slave and read by the master. The same names are used for different registers since
itisusually clear from the context which register ismeant. If it isnecessary to distinguish
between registers, we will refer to the registers as “ SPDOR writable by the slave’ or
“SPDOR writable by the master.”
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A status register can be read by either the slave or the master. The status register has full/
empty bitsfor each of the six registers. A dataregister is considered full when it iswritten
to by whichever sideis capable of writing to it. If the same register is then read by either
sideit is considered to be empty. The flag for that register isthus set to a"1" when the reg-
ister iswritten to, and the flag is set to a"0" when the register isread.

The registers appear to be internal 1/0 registersto the slave. To the master, at least for a
Rabbit master, the registers appear to be external I/O registers. The figure below showsthe
sequence of events when the master reads/writes the slave port registers.

Slave Port Read Cycle
/SCS T\ T
1 Tsu(SCS) <——>ITh(SCS)
SA1, SA0 — ) —
:<—>: Tsu(SA) <> Th(SA)
ISRD \ /
| ! Tw(SRD)
SD[7:0] — X —
>!Ten(SRD) ' Tdis(SRD)
I 1Ta(SRD)
ISWR :

i<— Tsu(SWR — SRD)

Slave Port Write Cycle

/SCS T\ _ -
:<—>: Tsu(SCS) :«—»: Th(SCS)
SA1, SA0 —_X X—
>, TSU(SA) > Th(SA)
ISWR \ /
! TW(SWR)
:J\ N 1

' Th(SD)

[}
! 1
le—> Tsu(SD)
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l«———> Tsu(SRD — SWR)

Figure 13-2. Slave Port R/W Sequencing
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The following table explains the parameters used in Figure 13-2.

Symbol Parameter Milzri:g)um Ma>((rir:)um
Tsu(SCS) /SCS Setup Time 5 —
Th(SCS) /SCS Hold Time 0 —
Tsu(SA) SA Setup Time 5 —
Th(SA) SA Hold Time 0 —
Tw(SRD) /SRD Low Pulse Width 40 —
Ten(SRD) /SRD to SD Enable Time 0 —
Ta(SRD) /SRD to SD Access Time — 30
Tdis(SRD) /SRD to SD Disable Time — 15
Tsu(SRW — SRD) | /SWR High to /SRD Low Setup Time 40 —
TW(SWR) /SWR Low Pulse Width 40 —
Tsu(SD) SD Setup Time 10 —
Th(SD) SD Hold Time 5 —
Tsu(SRD — SWR) | /SRD High to /SWR Low Setup Time 40 —

The two SPDOR registers have specia functionality not shared by the other data registers.
If the master writes to SPDOR, an inbound interrupt flip-flop is set. If slave port interrupts
are enabled, the slave processor will take a dave port interrupt. If the slave writesto the
other SPDOR register, the slave attention line (/SLAVEATTN, pin 100) is asserted (driven
low) by the slave processor. Thisline can be used to create an interrupt in the master.
Either side that isinterrupted can clear the signal that is causing an interrupt request by writ-
ing to the slave port status register. The data bits are ignored, but the flip-flop that is the
source of the interrupt request is cleared. Figure 13-3 shows alogical schematic of this func-
tionality.
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Master writes SPDOR

Slave inbound interrupt requested

Visible in status register

Slave writes status register

Slave writes SPDOR
/ISLAVEATTN (PB7)

N D

AN
Visible in status register

Master writes status register

Figure 13-3. Slave Port Handshaking and Interrupts

Figure 13-4 shows a sample connection of two slave Rabbits to a master Rabbit. The mas-
ter drivesthe dave reset line for both slaves and provides the main processor clock from
itsown clock. There is no requirement that the master and slave share a clock, but doing
so makes it unnecessary to connect a crystal to the slaves. Each Rabbit in Figure 13-4 has
to have RAM memory. The master must also have flash memory. However, the slaves do
not need nonvolatile memory since the master can cold boot them over the slave port and
download their program. In order for thisto happen, the SMODEO and SMODEL1 pins
must be properly configured as shown in Figure 13-4 to begin a cold boot process at the
end of the slave reset.
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Master Rabbit First Slave Rabbit
DO-D7 g - SDO-SD7 .
/IORD /SRD
/IOWR ISWR
AO SAO
Al SA1l SMODEO
CLK /IXTALB1
portout IRESET SMODE1
INTOA /SLAVEATTN
n7 /SCS
INT1A N
/16
Second Slave Rabbit
-
+
Reset
Pulldown SMODEO |
/SLAVEATTN SMODEL
/SCS

Figure 13-4. Typical Connection Slave Rabbit to Master Rabbit

The slave port lines are shown in Figure 13-1. The function of these lines is described
below.

SD0O-SD7—These are bidirectional data lines, and are generally connected to the data
bus of the master processor. Multiple slaves can be connected to the databus. The
slave drives the data lines only when /SCS and /SRD are both pulled low.

SA1, SA0—These are address lines used to select one of the four data registers of the
daveinterface. Normally these lines are connected to the low-order address lines of
the master. The master always drives these lines which are always inputs to the slave.

/SCS—Input. Slave chip select. The slave ignores read or write requests unless the
chip select islow. If aRabbit isused as a master, this line can be connected to one of
the master’s programmable chip select lines/10-17.

/SRD—Input. If /SCSisalsolow, thisline pulled low causes the contents of the regis-
ter selected by the address linesto be driven on the data bus. If aRabbit isused asa
master, thisline is normally connected to the global 1/O read strobe /IORD.

ISWR—Input. If /SCSisalso low, thisline causes the data bits on the data bus to be
clocked into the register selected by the address lines on the rising edge of /SWR or
/SCS, whichever risesfirst. If aRabbit is used as a master, thislineis normally con-
nected to the global 1/0 write strobe /IOWR.
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* /SLAVEATTN—Thislineisset low (asserted) if the slave writesto the SPDOR register.
Thislineis set high if the master writes anything to the slave status register. Thislineis
usually connected to cause the master to be interrupted when it goes low.

The data lines of the dave port are shared with parallel port A that uses the same package
pins. The slave port can be enabled, and parallel port A be disabled, by storing an appro-
priate code in the slave port control register (SCR). After the processor isreset, al the
pins belonging to the slave interface are configured as parallel-port inputs unless
(SMODEL, SMODEDQ) are set to (0,1), in which case the slave port is enabled after reset
and the slave starts the cold-boot sequence using the slave port.

13.1 Hardware Design of Slave Port Interconnection

Figure 13-4 shows atypical circuit diagram for connecting two slave Rabbits to a master
Rabbit. The designer has the option of cold-booting the slave and downloading the pro-
gram to RAM on each cold start. Another option isto configure the dave with both RAM
and flash memory. In this case, the slave will only have the program downloaded for
maintenance or upgrades. Usually, the flash would not be written to on every startup
because of the limited number of lifetime writes to flash memory. The daves reset in
Figure 13-4 isunder the program control of the master. If the master isreset, the slave will
also be reset because the master’s drive of the reset line will be lost on reset and the pull-
down resistor will pull the slaves’ resets low. This may be undesirable because it forces
the slave to crash if the master crashes and has a watchdog timeout.

13.2 Slave Port Registers

The dlave port registers are listed in Table 13-1. These registers, each of which is actually
two separate registers, one for read and one for write, are accessible to the slave at the 1/0
addresses shown in the table and they are accessible to the master at the external address
shown which specifies the value of the save address (SA0, SA1) input to the slave when
the master reads or writes the registers. The register that can be written by the slave can
only be read by the master and vice versa. If one side were to attempt to read aregister at
the same time that the other side attempted to write the register the result of the read could
be scrambled. However, the protocols and handshaking bits used in communication are
normally such that this never happens.

Table 13-1. Slave Port Registers

Register Mnemonic Internal External
Address Address
SPDOR 20h 0
Slave Port Data x Register SPD1R 21h 1
SPD2R 22h 2
Slave Port Status Register SPSR 23h 3
Slave Port Control Register SPCR 24h N.A.
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If the user for some reason wants to depart from the suggested protocols and poll aregister
while waiting for the other side to write something to the register, the user should be aware
that all the bits might not change at the exact same time when the result changes, and a
transitional value could be read from the register where some bits have changed to the new
value and others have not. To avoid being confused by atransitional value, the user can
read the register twice and make sure both values are the same before accepting the value,
or the user can test only one bit for achange. The transitional value can only exist for one
read of the register, and each bit will have its old value change to the new value at some
point without wavering back and forth. The existence of atransitional value could be very
rare and has the potential to create a bug that happens often enough to be serious, but so
infrequently asto be difficult to diagnose. Thus, the user is cautioned to avoid this situa-
tion.

Table 13-2 describes the dlave port control register.

Table 13-2. Slave Port Control Register (SPCR) (adr = 024h)

Bit 7 w/o Bits 6,5 R/O Bit 4 Bit 3,2 w/o Bits 1,0 w/o
00—disable dave port,
0—obey SMODE Egz A isabytewide input ?r?[;rr;o tsl ave
pins Reads SMODE pins | D tietie Save por pp_enp e dave
1—ignore SMODE smodel,smode0 port A isabyte wide port interrupt
pins output port priority 1-3.
1x—enable the slave port

The functionality of the bitsis as follows:

Bit 7—If setto "0," the cold-boot feature will be enabled. Normally thisbitissettoa"1"
after the cold boot is complete. The cold boot for the slave port is enabled automatically if
(SMODE1, SMODEQ) lines are set to (0,1) after the reset ends. This features disables the
normal operation of the processor and causes commands to be accepted via the slave port
register SPDOR. These commands cause data to be stored in memory or 1/0 space. When
the master that is managing the cold boot has finished setting up memory and /O space,
the (SMODEL, SMODEDO) pins are changed to code (0,0), which causes execution to start
at address zero. Typically thiswill start execution of a secondary boot program. At some
point, bit 7 will be set to a"1" so that the SMODEX pins can be used as normal input pins.

Bits 6,5—May be used to read the input pins SMODE, SMODEQ.

Bits 3,2—Bit 3 enables the dave port when set to a"1," disabling parallel port A and various
other port lines. Bit 3 isautomatically set to a"1" if a cold boot is done viathe dave port.
If bit 3is"0," then bit 2 controls whether parallel port A isan input (bit 2 = 0) or an output
(bit 2 =1).

Bits 1,0—This 2-bit field setsthe priority of the slave port interrupt. Theinterrupt is disabled
by (0,0).
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Table 13-3 describes the dave port satus register. The status register has 6 bitsthat are set if
the particular register isfull. That meansthat the register has been written by the processor that
canwriteto it but it has not been read by the processor that can read it. The bitsfor SPDOR are
used to control the dave interrupt and the handshaking lines as shown in Figure 13-3.

Table 13-3. Slave Port Status Register (SPSR) (adr = 023h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

1—setb 1—setb 1—setb 1—setb 1—setb 1—set by

1—set by Y Y Yl 1—set by y Y |dave

master master master master davewrite davewrite |davewrite write to

write to writeto write to writeto to0 SPDOR to SPD2R. |to SPD1R. SPDOR
SPD2R. SPD1R. SPDOR. " | Cleared Cleared '

SPDOR. Cleared by Cleared
Cleared Cleared Cleared when when

Cleared by master when

. when dave | when save | when Save . master master

slave write writeto master
reads reads reads reads reads

to SPSR. . . . SPSR. ) ) reads
register. register. register. register. register. register

13.3 Applications and Communications Protocols for Slaves

The communications protocol used with the slave port depends on the application. A slave
processor may be used for various reasons. Some possible applications are listed below.

Keep in mind that the Rabbit can also be operated as a slave processor viaa serial port and
some of the protocols will work well viaa serial communications connection. If a serial
connection is used, the protocol becomes more complicated if errors in transmission need
to be taken into account. If the physical link can be controlled so that transmission errors
do not occur, aredlistic possibility if the interconnection environment is controlled, the
serial protocol is simpler and faster than if error correction needs to be taken into account.

13.3.1 Slave Applications

» Motion Controller—Many types of motion control require fast action, may be com-
pute-intensive or both. Traditional servo system solutions may be overly expensive or
not work very well because of system nonlinearities. The basic communications model
for amotion controller isfor the master to send short messages—positioning com-
mands—to the lave. The slave acknowledges execution of the commands and reports
exception conditions.

e Communications Protocol Processor—Communications protocols may be very com-
plex, may require fast responses, or may be compute-intensive.

» Graphics Controller—The Rabbit can be used to perform operations such as drawing
geometric figures and generating characters.

» Digital Signal Processing—A Ithough the Rabbit is not a speciality digital signal pro-
cessor, it has enough compute speed to handle some types of jobs that might otherwise
require a speciality processor. The slave processor can process data to perform pattern
recognition or to extract a specific parameter from a data stream.
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13.3.2 Master-Slave Messaging Protocol

In this protocol the master sends messages to the slave and receives an acknowledgement
message. The protocol can be polled or interrupt driven. Generally, the master sends a
message that has a message type code, perhaps a byte count, and the text of the message.
The dlave responds with a similar message as an acknowledgement. Nothing happens
unless the master sends a message. The slave is not allowed to initiate a message, but the
slave could signal the master by using a parallel port line other than /SLAVEATN or by
placing datain one of the registers the master can read without interfering with the mes-
sage protocol.

The master sends a message byte by storing it in SPDOR. The slave notices that SPDOR is
full and reads the byte. When the master notices that SPDOR is empty because the slave
read it, the master stores the next byte in SPDOR. Either side can tell if any register is
empty or full by reading the status register. When the slave acknowledges the message
with areply message, the process is reversed. To perform the protocol with interrupts, a
dlave interrupt can be generated each time the slave receives a character. The slave can
acknowledge the master by reading SPDOR if the master is polling for the slave response
to each character. If the master isto be interrupted to acknowledge each character, the
slave can create an interrupt in the master by storing a dummy character in SPDOR to cre-
ate a master interrupt, assuming that the /SLAVEATTN lineiswired to interrupt the mas-
ter. The acknowledgement message works in a similar manner, except that the master
writes adummy character to interrupt the slave to say that it has the character.

Several problems can ariseif there are dual interrupts for each character transmitted. One
problem is that the message transmission rate will free run at a speed limited by the inter-
rupt latency and compute speed of each processor. This could consume a high percentage
of the compute resources of one or both processors, starving other processes and espe-
cialy interrupt routines, for compute time. If thisis a problem, then atimed interrupt can
be used to drive the process on one side, thus limiting the data transmission rate.

Another solution, which may be better than limiting the transmission rate, is to use inter-
rupts only for the first byte of the message on the slave side, and then lower the interrupt
priority and conduct the rest of the transaction as a polled transaction. On the master side
the entire transaction can be a polled transaction. In this case, the entire transaction takes
place in the interrupt routine on the slave, but other interrupts are not inhibited since the
priority has been lowered.

A typical slave system consists of a Rabbit microprocessor and aRAM memory con-
nected to it. The clock can be provided either by connecting a crystal, or crystals to the
slave or by providing an external clock, which could be the master’s clock. The reset line
of the slave would normally be driven by the master. At system startup time the master
resets the slave and cold bootsit viathe slave port. (The SMODE pins must be configured
for this.) Once the software is loaded into the slave, the slave can begin to perform its
function.
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As asimple example, suppose that the slave isto be used as afour-port UART. It has the
capability to send or receive characters on any of its four serial ports. Leaving aside the
question of setup for parameters, such as the baud rate, we could define a protocol asfol-
lows.

SPDOR readable by master is a status register with bits indicating which of the four
receivers and four transmittersis ready, that is, has a character received or is ready to
send a character.

SPDOR writable by the master isa control register used to send commands to the dave.
SPD1R is used to send or receive data characters or control bytes.

Theline/SLAVEATTN iswired to the external interrupt request of the master so that
the master is interrupted when the slave writesto SPDOR. Typically the slave will
write to SPDOR when there is a change of status on one of the seria ports.

The slave can interrupt the master at any time by storing to SPDOR. It will do this every
time an enabled transmitter isready to accept acharacter or every time an enabled receiver
receives acharacter. When it storesto SPDOR, it will store a code indicating the reason for
the interrupt, that is, receive or transmit and channel number. If the cause isreceive, the
received character will also be placed in SPD1R writable by the slave. When the master is
interrupted for any reason, the master will sneak a peek at SPDOR by reading SPSR. If the
interrupt is caused by areceive character, it will remove the character from SPD1R and
read SPDOR to handshake with the slave.

If the master isinterrupted for transmitter ready, as determined by the sneak peek, it will
place the outgoing character in SPD1R and write a code to SPDOR indicating transmit and
channel number. Thiswill cause the slave to be interrupted, and the slave will take the
character and handshake by reading SPDOR. This handshake does not interrupt the master.

144 Rabbit 2000 Microprocessor



14. RABBIT 2000 CLOCKS

The Rabbit 2000 has two built-in oscillators. The 32.768 kHz clock oscillator is needed
for the battery-backable clock, the watchdog timer, and the cold-boot function. The main
oscillator provides the run-time clock for the microprocessor. Figure 14-1 shows these
oscillator circuits.

XTALA2 330 kQ 15 pF XTALB2 2 kQ 33 pF
— O Wvr—p—AF——
10 MQ == 32.768 kHz 1 MQ 1 11.0592 MHz
o — O —F
XTALA1 15pF = XTALB1 33pF =
(a) 32.768 kHz Oscillator (b) Main Oscillator

Figure 14-1. Rabbit 2000 Oscillator Circuits

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason, a
wait loop in the BIOS waits until this oscillator is oscillating regularly before continuing
the startup procedure. If the clock is battery-backed, there will be no startup delay since
the oscillator is already oscillating. The startup delay may be as much as 5 seconds. Crys-
talswith low seriesresistance (R < 35 kQ) will start faster. The required oscillator circuit
isshown in Figure 14-1(a).

Improvements were made in revisions A—C to reduce the internal power consumption of
the RTC circuit. In addition, external circuitry was introduced to further reduce the oscilla-
tor power consumption in board-level products based on the Rabbit 2000. Refer to
Section B.2.4 for more information.
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14.1 Low-Power Design

The power consumption is proportional to the clock frequency and to the square of the
operating voltage. Thus, operating at 3.3V instead of 5V will reduce the power consump-
tion by afactor of 10.9/25, or 43% of the power required at 5 V. The clock speed is
reduced proportionally to the voltage at the lower operating voltage. Thusthe clock speed
at 3.3V will be about 2/3 of the clock speed at 5 V. The operating current is reduced in
proportion to the operating voltage.

The Rabbit 2000 does not have a"standby" mode that some microprocessors have. Instead,
the Rabbit has the ability to switch its clock to the 32.768 kHz oscillator. Thisis called the
sleepy mode. When thisis done, the power consumption is decreased dramatically. The
current consumption is often reduced to the region of 100 pA at this clock speed. The
Rabbit executes about 6 instructions per millisecond at this low clock speed. Generally,
when the speed is reduced to this extent, the Rabbit will be in atight polling loop looking
for an event that will wake it up. The clock speed isincreased to wake up the Rabbit.

14.2 Clock Spectrum Spreader Module

The clock spectrum spreader is afeature that was introduced on the Rabbit 3000 and
migrated to revisions B and C of the Rabbit 2000. The clock spectrum spreader is very
effective for reducing EMI and radiated emissions because it will reduce all sources of
EMI above 100 MHz that are related to the clock by about 15 dB. See Section B.2.12 for
more information.
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15. AC TIMING SPECIFICATIONS

The Rabbit 2000 processor may be operated at voltages between 2.5V and 5.5V, and at

temperatures from —40°C to +85°C with use possible use over the range -55°C to +120°C.
Most userswill operate the Rabbit at either 5.0 V or 3.3 V. The most computation per watt
is obtained at approximately 3.3 V. The highest practical speed isusually obtained at 5 V.

The Rabbit isavailablein one version, which has a maximum clock speed of 29.4 MHz over the
industrial temperature range of -40°C to +85°C. The R30 hasamaximum clock speed of 18.9
MHz at 3.3V +£10%. The maximum clock speedis11.5 MHz a 2.5 V.

If ahalf-speed crystal is used with the clock doubler to achieve the desired clock speed, the
maximum clock speed must be reduced by 4% to allow for an up to 4% asymmetry (52/48)
in the waveform generated by the oscillator. Thisis because the clock doubler uses the inter-
mediate edge to generate the double frequency. If the clock doubler is used to double
14.7456 MHz to 29.4912 MHz, the operating temperature should be limited to 70°C.

To optimize power consumption, the usual strategy isto use a supply voltage between 3V
and 3.5V, and the clock speed should be adjusted downward as far as feasible. This will
give the maximum computation per watt.

Table 15-1. Rabbit Basic Worst-Case Timings

250V min. | 3.3V +10% | 3.3V 5% |5.0V £10% | 5.0V + 5%
-40°C- -40°C- -40°C- -40°C- -40°C-
+85°C +85°C +70°C +85°C +70°C
Maximum clock speed 11.5MHz 175 MHz 19.25MHz | 29.5MHz 31.5MHz
Maximum clock speed
generated using clock 11.06 MHz |16.75MHz |185MHz 28.5MHz 30.0 MHz
doubler
Togr OUtPUL delay with
20 pF addressine load 15ns 11 ns 10ns 8ns 7ns
Tagr OUtPUL delay with
70 pF address ine load 27 ns 21ns 19 ns 15ns 14 ns
Teetup 4ns 4ns 3ns 3ns 2ns
Toe delay from clock to
output enable (10 pF load) 12ns 8ns 8ns 6ns 5ns
2001.01.31
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The industrial clock speed valuesin Table 15-1 (at a maximum temperature of 85°C) are
improved by 7% over commercial ratings at 70°C (which are extended to -40°C here). The
effect of temperature aloneis aclock speed that is approximately 1.2% lower for each 5°C
temperature increase. The maximum clock speed is approximately directly proportional to
the operating voltage.

If serial communication is to be used at standard baud rates, then certain clock speeds
must be used. These clock speedsare usually multiples of 1.8432 MHz to ensure that baud
rates of 57,600 bps, 19,200 bps, and less will be available. Multiples of 3.6862 MHz
ensure that baud rates of 115,200 bps, 38,400 bps, and less will be available. Multiples of
1.2288 MHz ensure that baud rates of 38,400 bps and less will be available. The standard
Rabbit BIOS will accept any clock speed that isamultiple of 0.6144 MHz.

The graphsin Figure 15-1 and Figure 15-2 illustrate the maximum clock speed at which
no failure is detected for atypical Rabbit 2000 as the voltage and temperature are varied.
The official design specifications specify alower maximum frequency to allow for pro-
cess variation.

The die suffers significant self-heating at higher clock speeds. The die to ambient thermal
impedance is 44°C/W at zero air flow. At 5V and a current consumption of 65 mA, this
would result in about 15°C of self-heating, and would reduce the maximum clock speed
by approximately 3%. This reduction isincluded in Table 15-2, which provides the mem-
Ory access time requirements.

When interfacing to memory devices, the memory access time required for adirectly
interfaced memory is given by:

access time = (clock period)* (2 + wait states) - Teetup - Tadr D

where T, isthe delay between the rising edge of T; and address valid, and Tey,, isthe
data setup time relative to the clock. Ty and Teyy, are shown in Figure 15-3 to Figure 15-

4 for memory read/write and 1/0O read/write cycles. Most 5V memoriesare TTL compatible
inthat they switch at 0.8 V and 2.0 V. Ty, is specified from the point at which the input

voltage reaches 30% or 70% of VDD for falling and rising signals respectively. Ty is
specified for the time from the clock that isrequired for the signal to reach 0.8 V.

The T4, measured was the time required for the signal to fall from ahigh level to 0.8 V.
Toqr depends on the bus loading—address line AO has a more powerful driver and can han-
dle double the capacitance with the same delay times. The T, times also apply to the
memory chip select lines.

The formulain Equation (1) remains true if the clock doubler is used, except that the
access time must be reduced by 4% of one clock period if there is an odd number of wait
states. The length of the T pulse is subjected to a reduction of up to 4% if the clock dou-

bler is used.
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Figure 15-1. Rabbit 2000 Typical Maximum Operating Frequency

versus Temperature at 5V and 3.3V
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15.1 Memory Access and I/O Read/Write Times

The memory access time requirements are listed in Table 15-2. It isimportant that wait
states should not be used for any memory that holds code that is being executed. Memory
wait states are only intended for use with data accesses. For code memory the clock should
be matched to the memory requirements, or one of the clock dividers should be enabled to
accommodate low memory. Asarough guide, each datamemory wait statein main RAM
that isintroduced will reduce the average compute performance by approximately 8%.
The data memory read accessis slowed by 50% for 1 wait state and is slowed by 100% for
2 walit states. However, since only a small proportion of accesses are data accesses rather
than code accesses or instruction fetch cycles, the overall affect on performance is dlight.
If data memory wait states are introduced, it isimportant to use the macros specified in the
BIOS so that the compiler will be aware of the wait states.

Generally, the maximum operating speed is proportional to the power supply voltage. The
operating current is proportional to the voltage, and so the operating power is proportional
to the square of the voltage. The operating power is also proportional to the clock speed.
Higher temperatures reduce the maximum operating speed by approximately 1% for each
5°C. In addition, higher operating speeds increase the die temperature because of the heat
generated and therefore slightly compound the adverse effects of higher temperature.
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Table 15-2. Memory Access Time Requirements (V+5%, T -40°C to +70°C)

Memory .
Clock Period : Access Time e MRl (6
Speed Wait @5 V 20 pF Access Time Compatible
(ns) States @5V 70 pF Load | Baud Rate
(MHz) Load (ns) (bps)
(ns) P
29.4912 34 0 59 52 921,600
27.6480 36.2 0 64 57 57,600
25.8048 38.7 0 69 62 115,200
25.8048 38.7 1 108 101 115,200
25.8048 38.7 2 147 140 115,200
24.576 40.7 0 73 66 38,400
23.9616 41.7 0 75 68 57,600
22.1184 452 0 82 75 230,400
221184 45.2 1 127 120 230,400
221184 45.2 2 173 165 230,400
20.2752 49.3 0 90 83 57,600
100 @5V NB@s5V
18.432 54.2 0 115,200
9% @33V 87 @33V
127@5V/ 120@5V/
14.7456 67.8 0 123@33V 114 @33V 460,800
197 @5 V/ 190 @ 5 V/
14.7456 67.8 1 193 @33V 184 @33V 460,800
172@5V 165 @ 5 V/
11.0592 90.5 0 168 @33V 159@33V 115,200
162 @ 2.5V(min) | 150 @ 2.5 V(min)
263@5V/ 256 @5V/
7.3728 135.6 0 259 @33V 250 @ 3.3V/ 230,400
253 @ 2.5V(min) | 241 @ 2.5V(min)
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Figure 15-3, Figure 15-4, and Figure 15-5 illustrate the memory and 1/0 read and write cycles.
The Rabbit operates at 2 clocks per bus cycle plus any wait states that might be specified.

The following memory read time delays were measured.

Table 15-3. Memory Read Time Delays

Output Capacitance
Time Delay 20 pF 70 pF

min. max. min. max.
Clock to address delay (T.q4) — 8ns — 14 ns
Clock to memory chip select delay (Tcsy) — 8ns — 14 ns
Clock to memory read strobe delay (Togy) — 6ns — 12ns
Data setup time (Teegyp) 3ns — 3ns —
Data hold time (Ty,9) Ons — Ons —

The measurements were taken at the 50% points under the following conditions.
* T=-40°Cto85°C,V =5.0V +10%
* Interna clock to nonloaded CLK pindelay < 1 ns @ 85°C/4.5V

The following memory write time delays were measured.

Table 15-4. Memory Write Time Delays

Output Capacitance
Time Delay 20 pF 70 pF

min. max. min. max.
Clock to address delay (Tq) — 8ns — 14 ns
Clock to memory chip select delay (Tcgy) — 8ns — 14 ns
Clock to memory write strobe delay (Tyygy) — 6 ns — 12 ns
High Z to datavalid relativeto clock (Tppzy) | — 11ns — 17 ns
Datavalid to high Z relativeto clock (Tpypz) | — 11ns — 11ns

The measurements were taken at the 50% points under the same conditions that the mem-
ory read delays were measured.
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Memory Read (no wait states)

| T1 | T2 |
CLK — | |~
A[19:0] X valid X
- (_Tadr

/CSx | \ yan
>l < Tesx 21 [ Tesx

/OEXx )‘ e
ToEx™] -, > < Toex

setup—~>| |«
D[7:0] dg?—
Thotd I

Memory Write (no extra wait states)

| T1 | Tw—— T2 ——
CLK —
A[1 90] valid >C
g < Tadr
/CSx | *
> Tesx Tesx™ -
/WEX }/7—
> \L TwEx Twex™| <
D[?O] I/ valid >“
> ’:‘ ToHzv | Tovuzl <

Figure 15-3. Memory Read and Write Cycles

Notice that the data times are different, depending on whether data are being read or writ-
ten. Ty 4 foOr data read specifies how long the data must remain valid following the rising
edge of T1 when the clock cycle repesats. Tpy,y for datawrite specifies how long the data
remain valid once /WEXx goes high, and must be at least one-half of a CPU clock cycle.
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The following 1/0 read time delays were measured.
Table 15-5. I/O Read Time Delays

Output Capacitance
Time Delay 20 pF 70 pF

min. max. min. max.
Clock to address delay (Toq,) — 8ns — 14 ns
Clock to memory chip select delay (Tcgy) — 8ns — 14 ns
Clock to 1/O chip select delay (T)ocsy) — 8ns — 14 ns
Clock to 1/0 read strobe delay (T;orp) — 6ns — 12 ns
Clock to 1/0 buffer enable delay (Tguren) | — 8ns — 14 ns
Data setup time (Tggryp) 3ns — 3ns —
Data hold time (T q) Ons — Ons —

The measurements were taken at the 50% points under the following conditions.

. T

-40°C 10 85°C, V =5.0V +10%

* Interna clock to nonloaded CLK pindelay < 1 ns @ 85°C/4.5V

The following 1/0 write time delays were measured.

Table 15-6. I/O Write Time Delays

Output Capacitance
Time Delay 20 pF 70 pF

min. max. min. max.
Clock to address delay (Tqr) — 8ns — 14 ns
Clock to memory chip select delay (Tcgy) — 8ns — 14ns
Clock to 1/0 chip select delay (T,ocsy) — 8ns — 14 ns
Clock to 1/0 write strobe delay (T;owr) — 6ns — 12 ns
Clock to 1/0 buffer enable delay (Tgyren) — 8ns — 14 ns
High Z to datavalid rdlative to clock (Tpnzy) — 11ns — 17 ns
Datavalid to high Z relative to clock (Tpynz) — 11lns — 17 ns

The measurements were taken at the 50% points under the same conditions that the 1/0
read delays were measured.
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I/O bus cycles have an automatic wait state and thus require 3 clocks plus any extra wait

states specified.
External I/O Read (no extra wait states)
| T1 | Tw——] T2 |
CLK —
A[15:0] X valid X
Tadr
/CSx | | -
1 Tesx Tesx
/IOCSx ~ T -
<1 Tiocsx Tiocsx
/IORD )y
<—{TiIorRD TiorD
/BUFEN -
TBUFEN TBUFEN
setup, <]
D[7:0] < X _valid_)-
| Thold[<—"
External I/O Write (no extra wait states)
| T1 | Tw—— T2 |
CLK - | | |
A[1 50] >< valid : >C
Tadr :
/ICSx _| 1 | AN
Tesx : Tesx
/IOCSx | \ : A
Tiocsx | Tiocsx
/IOWR
Tiowr Tiowr
/BUFEN 6
TBUFEN TBUFEN
D[7:0] valid —
TbHzv | TovHzI<—

Figure 15-4. 1/0O Read and Write Cycles No Extra Wait States
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Figure 15-5 showsthe effect of adding an extrawait state to the memory read/write cycles.
The effects are similar for the 1/0 bus read/write cycles.

Memory Read (one wait state)
| T1 | Tw——] T2 ——
CLK —I | |
A[19:0] X valid X
- - Tadr
/ICSx | \ /
- - TCSx g -~ TCSX
JOEx WL —
T X—> < —> < T v
OF Tsetup > < °F
D[7:0] < valid _ >—
| I Thold I
Memory Write (one wait state)
| T1 | Tw e Tw1—] T2 |
CLK —
A[1 90] valid >C
i < Tadr
/CSx | *
- Tosx Tesx?] €
/WEX +\ ,~/
>l Twex Twex™  [©
D[70] I/ valid >|>
g I:‘ ToHzv | | TovHz™ 1<

Figure 15-5. Memory Read and Write with Wait States
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Table 15-7 provides typical memory and external 1/0O parameters measured at 3.3 V.

Table 15-7. Memory and External /O Read/Write Parameters at 3.3 V

Parameter Description Value
o T Time from CPU clock rising Max. 10ns@ 20 pF
5 | ar edge to address valid 19 ns @ 70 pF
-O -
CB q-)
2 g Teetup Dataread setup time Min.  3ns
3
O 1 Thod Dataread hold time Min.  Ons
o |1 Time from CPU clock rising Max.  10ns @ 20 pF
02 adr edge to address valid 19ns @ 70 pF
— O
= .
= g T Datawrite hold time from /WEx Min.  ¥2CPU clock cycle
o | hd o lowR
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15.2 Current Consumption

Typical current is proportional to both clock frequency and voltage. The main oscillator
requires approximately 6 mA at 5V and 2 mA at 3V independent of frequency. The basic
current consumption for the processor exclusive of the oscillator at 5V and 15 MHz is
approximately 42 mA. The following formula can be used to compute the current con-
sumption:

| = (0.7)*(freqg MH2)* (voltage) + (0.35)* (voltage - 0.86)2 2

The first term represents the current consumed by the processor, which is directly propor-
tional to voltage and frequency. The second term is the current consumed by the main
oscillator, which is approximately independent of frequency, but varies as the square of
the voltage. Thisterm is zero when the main oscillator is disabled. Some checkpoints for
current consumption are provided in Table 15-8.

Table 15-8. Typical Current at Selected Frequencies and Voltages at 25°C

Clock Frequency Voltage Current
(MHz) V) (mA)
29.4912 5 109
22.11 5 83
14.7456 5 58
14.7456 33 36
7.3728 33 19
3.6864 33 11
1.8432 33 6
0.9216 33 42
0.4608 33 3.14
0.032 (sleepy mode) 5 0.280
0.032 (sleepy mode) 4 0.173
0.032 (sleepy mode) 33 0.113
0.032 (sleepy mode) 2.7 0.072

The current consumed by memory and other devices included in the system, including
pullup resistors, outputs driving aload, and floating inputs, must be added to the figuresin
Table 15-8.
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The 32.768 kHz clock oscillator and the associated real-time clock consume approxi-
mately 23 pA at 3V. (At 2.25 V, when backed by a battery, the current consumption is
approximately 11 pA.) The (typical) current consumed when the main power is off, and
only the 32.768 kHz oscillator and clock are powered, is given by the formula

current (UA) = 5.44*(V - 0.86)2 (©)]

whereV isthe operating voltage. Thisisthe current that must be supplied by a backup bat-
tery, not counting the current required by the associated circuits. The oscillator will not
operate below approximately 1.3 V. The measurement from which the above formulawas
derived were made with a series resistor of 390 kQ and load capacitors of 15 pF in the
32.768 kHz oscillator circuit. The shunt resistor was 10 MQ.

If the processor is running at 32.768 kHz, then the added current to operate the processor
at room temperature (main oscillator shut off) is given by:

current (UA) = 7.5+ (V) (4)

In low-power modes the current consumption is proportional to the square of the voltage.
At 3.0V thisisapproximately 67 pA. Add the 25 A needed to operate the oscillator and
thetotal current consumption will be approximately 92 uA with the processor operating at
32.768 kHz.

The current consumed by RAM or flash memory will be substantial and very significant at
lower frequenciesif auto powerdown flash or low-power RAM is not used. If low-power
RAM is used to support the sleepy mode, the sleepy mode |oop should be copied to RAM
and executed in RAM. When trying to operate in an ultra low-power sleepy mode, it is
important that no inputs be floating. Floating inputs consume substantial power. Keepin
mind that port D open-drain outputs will create floating inputs if not pulled toward zero.
Pullup resistors consume current and should be avoided or disabled in ultralow-power
modes. When testing a sleepy mode of operation, it is advisable to connect an ammeter to
make sure that no extra floating inputs or other current-consuming features areincluded in
the setup.
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16. RABBIT BIOS AND VIRTUAL DRIVER

When a program is compiled by Dynamic C for a Rabbit target, the Virtual Driver is auto-
matically incorporated into the program. Virtual Driver isthe name given to someinitial-
ization routines and a group of services performed by the periodic interrupt. The Rabbit
BIOS, software that handles startup, shutdown and various basic features of the Rabbit, is
compiled to the target along with the application program.

Z-World provides the full source code for the BIOS and Virtual Driver so the user can
modify them and examine details of the operation that are not apparent from the documen-
tation.

More details on the BIOS and Virtual Driver software can be found in the Dynamic C
User’s Manual, the Rabbit 2000 Designer’s Handbook and the source code in the
Dynamic C libraries.

16.1 The BIOS

The BIOS provided with Dynamic C will work with all Z-World and Rabbit Semiconduc-
tor Rabbit board products.

The BIOS is compiled separately from the user’s application. It occupies space at the bot-
tom of the root code segment. When execution of the user’s program starts at address zero
on power-up or reset, it starts in the BIOS. When Dynamic C cold-boots the target and
downloads the binary image of the BIOS, the BIOS symbol tableis retained to make its
entry points and global data available to the user application. Board specific drivers are
compiled with the user’s program after the BIOS is compiled.

16.1.1 BIOS Services
The BIOS includes support for the following services.
e System startup: including setup of memory, wait states and clock speed.

» Writing to flash. Writes to the primary code memory require turning off interrupts for
up to 20 ms or so. To protect the System Identification Block (see the Rabbit 2000
Designer’s Handbook for more information on the System ID Block), the flash driver
will not write to that block. A routine that can actually write this block is not included
in the BIOS to make it hard to accidently corrupt this block.

* Run-time exception handling and logging to handle fatal errors and watchdog time-outs
(error logging not implemented in older versions).

» Debugging and PC-target communication

User’s Manual 161



16.1.2 BIOS Assumptions

The BIOS makes certain assumptions concerning the physical configuration of the proces-
sor. Processors are expected to have RAM connected to /CS1, /WEL, and /OEL. Flashis
expected to be connected to /CSO, /WEO, and /OEQ. (See the Rabbit 2000 Designer’s
Handbook Memory Planning chapter if you want to design a board with RAM only.) The
crystal frequency is expected to be n*1.8432 MHz.

The Rabbit 2000 Designer’s Handbook has a chapter on the Rabbit BIOS with more
details.

16.2 Virtual Driver

The Virtual Driver is compiled with the user’s application. It includes support for the fol-
lowing services.

* Hitting the hardware watchdog timer.
» Decrementing software watchdog timers.

» Synchronizing the system timer variables with the real-time clock and keeping them
updated.

e Driving uC/OS-I1 multi-tasking.
 Driving dlice statement multi-tasking.
16.2.1 Periodic Interrupt

The periodic interrupt that drives the Virtual Driver occurs every 16 clocks or every 488
us. If the 32.768 kHz oscillator is absent, it is possible to substitute a different periodic
interrupt. This aternative is not supported by Z-World since the cost of connecting acrys-
tal isvery small. The periodic interrupt keeps the interrupts turned off (that is, the proces-
sor priority israised to 1 from zero) for about 75 clocks, so it contributes little to interrupt
latency.

The periodic interrupt isturned on by default before mai n() iscalled. It can be disabled if
needed. The Dynamic C Premier Users's Manual chapter on the Virtual Driver provides
more details on the periodic interrupt.

The Rabbit 2000 microprocessor requires the 32 kHz oscillator in order to boot via
Dynamic C, unless a custom loader and BI1OS are used.

16.2.2 Watchdog Timer Support

A microprocessor system can crash for avariety of reasons. A software bug or an electri-
cal upset are common reasons. When the system crashes the program will typically settle
into an endless loop because parameters that govern looping behavior have been cor-

rupted. Typically, the stack becomes corrupted and returns are made to random addresses.

The usual corrective action taken in response to a crash is to reset the microprocessor and
reboot the system. The crash can be detected either because an anomaly is detected by pro-
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gram consistency checking or because a part of the program that should be executing peri-
odically is not executing and the watchdog times out.

The Virtual Driver’s periodic interrupt hits the hardware watchdog timer with a 2 second
time-out. If the periodic interrupt stops working, then the watchdog will time out after 2
seconds. The Virtual Driver provides anumber of additional “virtual” watchdog timersfor
use in other parts of the code that must be entered periodically. The user program must hit
each virtual watchdog periodically.

The best practiceisto let the periodic interrupt hit the hardware watchdog exclusively, and
use virtual watchdogs for other code that must be run periodically. If hitsto the hardware
watchdog are scattered through a program, then it may be possible for the code to enter an
endless |oop where the watchdog is hit, and therefore rendered useless for detecting the
endless loop condition. If no virtual watchdogs are used, an undetected endless loop con-
dition could still occur since the periodic interrupt can still hit the hardware watchdog.

If any of the virtual watchdogs times out, then hits are withheld from the hardware watch-
dog and it times out, resulting in a hardware reset. Virtual watchdogs may be allocated,
deallocated, enabled and disabled. The advantage of the virtual watchdogsisthat if any of
them fail an error is detected.

The Dynamic C Premier Users's Manual chapter on the Virtual Driver provides more
details on virtual watchdogs.
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17. OTHER RABBIT SOFTWARE

17.1 Power Management Support

The power consumption and speed of operation can be throttled up and down with rough
synchronism. Thisis done by changing the clock speed or the clock doubler. The range of
control is quite wide: the speed can vary by afactor of 16 when the main clock is driving
the processor. In addition, the main clock can be switched to the 32.768 kHz clock. In this
case, the lowdown isvery dramatic, afactor of perhaps 500. In this ultraslow mode, each
clock takes about 30 ps, and atypical instruction takes 150 us to execute. At this speed,
the periodic interrupt cannot operate because the interrupt routine would execute too
slowly to keep up with an interrupt every 16 clocks. Only about 3 instructions could be
executed between ticks.

A different set of rules appliesin the ultraslow or “sleepy” mode. The Rabbit 2000 auto-
matically disables periodic interrupts when the clock mode is switched to 32 kHz or one of
the multiples of 32 kHz. This meansthat the periodic-interrupt hardware does not function
when running at any of these 32 kHz clock speeds simply because there are not enough
clock cycles available to service the interrupt. Hence virtual watchdogs (which depend on
the periodic interrupt) cannot be used in the sleepy mode. The user must set up an endless
loop to determine when to exit sleepy mode. A routine, updat eTi mer s() , isprovided to
update the system timer variables by directly reading the real-time clock and to hit the watch-
dog whilein sleepy mode. If the user’s routine cannot get around the loop in the maximum
watchdog timer time-out time, the user should put several callsto updat eTi mers() in
the loop. The user should avoid indiscriminate direct access to the watchdog timer and
real-time clock. The least significant bits of the real-time clock cannot be read in ultra
slow mode because they count fast compared to the instruction execution time. To reduce
bus activity and thus power consumption, it is useful to multiply zero by zero. This
requires 12 clocks for one memory cycle and reduces power consumption. Typically a
number of nmul instructions can be executed between each test of the condition being
waited for.

Dynamic C libraries also provide functions to change clock speedsto enter and exit sleepy
mode. See the Rabbit 2000 Designer’s Handbook chapter Low Power Design and Sup-
port for more details.
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17.2 Reading and Writing 1/0 Registers
The Rabbit has two 1/0 spaces: internal 1/O registers and external 1/0 registers.

17.2.1 Using Assembly Language

The fastest way to read and write 1/O registersin Dynamic C isto use a short segment of
assembly language inserted in the C program. Accessisthe same as for accessing data
memory except that the instruction is preceded by a prefix (i oi or i oe) to indicate the
internal or external 1/0 space.For example.

/1 conpute value and wite to Port A Data Register

val ue=x+y

#asm

Id a, (val ue) ; value to wite

ioi |d (PADR),a ; wite value to PADR
#endasm

In the example abovethei oi prefix changes a store to memory to a store to an internal
I/O port. The prefix i oe isused for writes to external 1/O ports.

17.2.2 Using Library Functions

Dynamic C functions are available to read and write I/O registers. These functions are pro-
vided for convenience. For speed, assembly code is recommended. For a complete
description of the functions noted in this section, refer to the Dynamic C Premier User’s
Manual or from the Help menu in Dynamic C, access the HTML Function Reference Of
Function Lookup Options.

To read internal 1/0 registers, there are two functions.

int RdPortl (i nt PORT) ; I/ returns PORT, high byte zero
int BitRdPortl (int PORT, int bitcode); // bit code 0-7

To writeinternal I/O registers, there are two functions.

void WPortl (int PORT, char *PORTShadow, int val ue);
void BitWPortl (int PORT, char *PORTShadow, int value, int bitcode);

The external registers are also accessible with Dynamic C functions.

int RdPortE(i nt PORT) ; I/ returns PORT, high byte zero
int BitRdPortE(int PORT, int bitcode); // bit code 0-7

int WPortE(int PORT, char *PORTShadow, int val ue);

int BitWPortE(int PORT, char *PORTShadow, int value, int bitcode);

In order to read a port the following code could be used:

k=RdPort| (PADR); // returns Port A Data Register
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17.3 Shadow Registers

Many of the registers of the Rabbit’s internal 1/O devices are write-only. This saves gates
on the chip, making possible greater capability at lower cost. Write-only registers are eas-
ier to use if amemory location, called a shadow register, is associated with each write-
only register. To make shadow register names easy to remember, the word shadow is
appended to the register name. For example the register GOCR (Global Output Control
register) has the shadow GOCRShadow Some shadow registers are defined in the BIOS
source code as shown below.

char GCSRShadow, // d obal Control Status Register

char GOCRShadow;, // dobal CQutput Control Register

char GCDRShadow, // d obal C ock Doubl er Register
If the port is awrite-only port, the shadow register can be used to find out the port’s con-
tents. For example GCSR has a number of write-only bits. These can be read by consult-
ing the shadow, provided that the shadow register is always updated when writing to the
register.

k=GCSRShadow,
17.3.1 Updating Shadow Registers

If the address of a shadow register is passed as an argument to one of the functions that
write to the internal or external 1/O registers, then the shadow register will be updated as
well as the specified 1/O register.

A NULL pointer may replace the pointer to ashadow register asan argument to W Por t | ()
and W Por t E() ; the shadow register associated with the port will not be updated. A pointer
to the shadow register is mandatory for Bi t W Port 1 () andBi t W Port E() .

17.3.2 Interrupt While Updating Registers

When manipulating /O registers and shadow registers, the programmer must keep in
mind that an interrupt can take place in the middle of the sequence of operations, and then
the interrupt routine may manipulate the same registers. If this possibility exists, then a
solution must be crafted for the particular situation. Usually it is not necessary to disable
the interrupts while manipulating registers and their associated shadow registers.

17.3.2.1 Atomic Instruction

Asan example, consider the parallel port D datadirection register (PDDDR). Thisregister
iswrite only, and it contains 8 bits corresponding to the 8 1/O pins of parallel port D. If a
bitinthisregisterisa“1,” the corresponding port pin isan output, otherwise it isan input.
It is easy to imagine a situation where different parts of the application, such as an inter-
rupt routine and a background routine, need to be in charge of different bitsinthe PDDDR
register. The following code sets a bit in the shadow and then setsthe /O register. If an
interrupt takes place between the set and thel dd, and changes the shadow register and
PDDDR, the correct value will still be setin PDDDR.
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I d hl, PDDDRShadow ; point to shadow register

| d de, PDDDR ; set de to point to I/Oreg

set 5, (hl) ; set bit 5 of shadow register

; use ldd instruction for atom c transfer

ioi 1dd ; (io de)<-(hl) side effect: hl--, de--

In this case, the | dd instruction when used with an 1/0O prefix provides a convenient data
move from a memory location to an 1/O location. Importantly, thel dd instruction is an
atomic operation so there is no danger that an interrupt routine could change the shadow
register during the move to the PDDDR register.

17.3.2.2 Non-atomic Instructions

If the following two instructions were used instead of the | dd instruction,

Id a, (hl)

|d (PDDDR),a ; output to PDDDR
then an interrupt could take place after thefirst instruction, change the shadow register and
the PDDDR register, and then after a return from the interrupt, the second instruction
would execute and store an obsolete copy of the shadow register in the PDDDR, setting it
to awrong value.

17.3.3 Write-only Registers Without Shadow Registers

Shadow register are not needed for many of the registers that can be written to. In some
cases, writing to registersis used as a handy way of changing a peripheral’s state, and the
databitswritten are ignored. For example, awrite to the status register in the Rabbit seria
portsis used to clear the transmitter interrupt request, but the data bits are ignored, and the
status register is actually aread-only register except for the special functionality attached
to the act of writing the register. Anillustration of awrite-only register for which a shadow
Isunnecessary isthetransmitter dataregister in the Rabbit seria port. The transmitter data
register isawrite-only register, but thereislittle reason to have a shadow register since
any data bits stored are transmitted promptly on the seria port.

17.4 Timer and Clock Usage

The battery-backable real-time clock is a 48 bit counter that counts at 32768 counts per
second. The counting frequency comes from the 32.768 kHz oscillator which is separate
from the main oscillator. Two other important devices are aso powered from the 32.768
kHz oscillator: the periodic interrupt and the watchdog timer. It is assumed that all mea-
surements of time will derive from the real-time clock and not the main processor clock
which operates at a much higher frequency (e.g. 22.1184 MHz). This alows the main pro-
cessor oscillator to use less expensive ceramic resonators rather than quartz crystals.
Ceramic resonators typically have an error of 5 partsin 1000, while crystals are much
more accurate, to afew seconds per day.
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Two library functions are provided to read and write the real-time clock:

unsigned long int read_rtc(void) ; I/ read bits 15-46 rtc

void wite_rtc(unsigned long int time) ; // wite bits 15-46

/1 note: bits 0-14 and bit 47 are zeroed
However, it is not intended that the real-time clock be read and written frequently. The
procedure to read it is lengthy and has an uncertain execution time. The procedure for
writing the clock is even more complicated. Instead, Dynamic C software maintainsalong
variable SEC_TI MER in memory. SEC_TI MERis synchronized with the real-time clock
when the Virtual Driver starts, and updated every second by the periodic interrupt. It may
be read or written directly by the user’s programs. Since SEC_TI MER isdriven by the
same oscillator as the real-time clock there is no relative gain or loss of time between the
two. A millisecond timer variable, MS_TI MER, is also maintained by the Virtual Driver.

Two utility routines are provided that can be used to convert times between the traditional
format (10-Jan-2000 17:34:12) and the seconds since 1-Jan-1980 format.

/1 converts time structure to seconds

unsigned |l ong nktinme(struct tm*timeptr);

/'l seconds to structure
unsigned int nktm(struct tm*timeptr, unsigned long tine);

The format of the structure used is the following

struct tm{

char tm sec; /] seconds 0-59

char tmm n; /] 0-59

char tm hour; /] 0-59

char tm nday; // 1-31

char tm non; /l 1-12

char tmyear; /1 00-150 (1900-2050)
char tm wday; /1 0-6 O==sunday

s
The day of the week isnot used to compute the long seconds, but it is generated when
computing from long seconds to the structure. A utility program, set cl ock. c, isavail-
able to set the date and time in the real-time clock from the Dynamic C STDIO console.
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18. RABBIT INSTRUCTIONS

Summary

All bugs related to instructions have been fixed in revisions A—C of the Rabbit 2000 chip.
See Appendix B for more information.

Detailed information on instructions in provided in this chapter.

“Load Immediate Data” on page 174

“8-bit Indexed Load and Store” on page 174

“16-bit Indexed Loads and Stores’ on page 174
“16-bit Load and Store 20-bit Address’ on page 175
“Register to Register Moves’” on page 175
“Exchange Instructions’ on page 176

“Stack Manipulation Instructions’ on page 176
“16-bit Arithmetic and Logical Ops’ on page 176
“8-bit Arithmetic and Logical Ops’ on page 177
“8-bit Bit Set, Reset and Test” on page 178

“8-bit Increment and Decrement” on page 178

“8-bit Fast A register Operations’ on page 179

“8-bit Shifts and Rotates’ on page 179

“Instruction Prefixes’ on page 180

“Block Move Instructions’ on page 180

“Control Instructions - Jumps and Calls’ on page 181
“Miscellaneous Instructions” on page 181
“Privileged Instructions’ on page 182

“Instructions in Alphabetical Order With Binary Encoding” on page 185
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Spreadsheet Conventions

ALTD (“A” Column) Symbol Key

Flag

Description

f

ALTD selects alternate flags

fr

ALTD selects alternate flags and register

r

ALTD selects alternate register

S

ALTD operation is a specia case

IOl and IOE (“I” Column) Symbol Key

Flag Description
b 10l and | OE affect source and destination
d 10l and | OE affect destination
s 10l and | OE affect source
Flag Register Key
S|zZ|uv'|C Description

Sign flag affected

Sign flag not affected

Zero flag affected

Zero flag not affected

LV flag contains logical check result

LV flag contains arithmetic overflow result

LV flag iscleared

LV flag is affected

* | Carry flag is affected

- | Carry flag is not affected

0 | Carry flag iscleared

1 |Carry flagisset

* TheL/V (logical/overflow) flag serves adua purpose—
L/V issetto 1 for logical operationsif any of the four
most significant bits of theresult are 1, and L/V isreset to
0if al four of the most significant bits of the result are O.
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Symbols

Rabbit | z180 Meaning
Bit select:
000 = hit 0, 001 = bit 1,
b b 010 = hit 2, 011 = hit 3,

100 = bit 4, 101 = hit 5,
110 = bit 6, 111 = bit 7

Condition code select:

cc cc 00=NZ,01=2,
10=NC,11=C
d d 7-bit (signed) displacement. Expressed in two’'s complement.
dd ww | Word register select destination: 00 = BC, 01 = DE, 10=HL, 11=SP
dd’ Word register select alternate: 00 = BC’, 01 = DE’, 10 =HL’
e j 8-bit (signed) displacement added to PC.

Condition code select:

000 = NZ (non zero),001 = Z (zero),

f f 010 = NC (non carry), 011 = C (carry),

100=LZ" (logical zero), 101 = LOT (logical one),
110 =P (sign plus), 111 = M (sign minus)

m m MSB of a 16-bit constant.
m m 16-bit constant.
n n 8-hit constant or LSB of a 16-bit constant.
Byte register select:
000=B,001=_C,
r. g g, g |010=D,011=E,
100=H, 101 =L,
111=A
Ss ww | Word register select (source): 00=BC, 01 = DE, 10=HL, 11=SP
Restart address select:
v v 010 = 0020h, 011 = 0030h,
100 = 0040h, 101 = 0050h,
111 =0070h
XX XX Word register select: 00=BC,01=DE, 10=1X,11=SP
vy vy Word register select: 00=BC, 01=DE, 10=1Y, 11 =SP
7z 7z Word register select: 00 =BC, 01 =DE, 10=HL, 11 = AF

* Logical zeroif al four of the most significant bits of the result are O.
T Logical oneif any of the four most significant bits of the result are 1.
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18.1 Load Immediate Data

I nstruction clk A | SZVC Qperation

LD I X, m 8 - - - - IX=m
LD 1Y, m 8 - - - - 1lY=m
LD dd, mm 6 r - - - - dd = m
LD r,n 4 r - - - - r =n

18.2 Load & Store to Immediate Address

I nstruction clk A | SZVC CQperation

LD (m), A 10 d---- (m) =A

LD A, (m) 9 r s---- A=(m)

LD (m), HL 13 d---- (m) =L; (m+l) =H

LD (m), I X 15 d- - - - (m) =1XL; (m+1l) = 1XH
LD (m), 1Y 15 d- - - - (m) =1YL; (m+1l) = 1YH
LD (m), ss 15 d- - - - (m) =ssl; (m+l) = ssh
LD HL, (mm) 11 r s--- - L=(m); H=(m+l)

LD I X, () 13 S - - - - IXL=(m); IXH=(m+1)
LD 1Y, (m) 13 S - - - - IYL=(m); IYH=(m+1)
LD dd, (m) 13 r s- - - - dd = (m); ddh = (mm+1)

18.3 8-bit Indexed Load and Store

I nstruction clk A | SZVC Qperation
LD A (BO) 6 r s---- A=(BO
LD A (DE) 6 r s---- A= (DB
LD (BO), A 7 d---- (BO =A
LD (DE), A 7 d---- (D =A
LD (HL), n 7 d- - - - (H) =n
LD (H),r 6 d---- (H) =r =B, C D E H L, A
LD r, (HL) 5 r s- - - - r =(H)
LD (I X+d), n 11 d- - - - (IX+td) =n
LD (I X+d),r 10 d- - - - (IX+d) =7
LD r, (I X+d) 9 r s- - - - 1 = (IX+d)
LD (1Y+d),n 11 d- - - - (lY+d) =n
LD (1Y+d),r 10 d- - - - (ly+d) =r
LD r, (1Y+d) 9 r s - - - - 1 = (lY+d)

18.4 16-bit Indexed Loads and Stores

I nstruction clk A | SZVC CQperation

LD (HL+d),HL 13 d- - - - (H+d) =1L; (HL+d+1) = H

LD HL, (HL+d) 11 rs---- L =(HH+d); H= (HL+d+1)

LD (SP+n), HL 11 - - - - (SP+n) =L; (SP+n+l) = H

LD (SP+n),1X 13 - - - - (SP+n) = IXL; (SP+n+l) = I XH
LD (SP+n),1Y 13 - - - - (SP+n) = 1YL, (SP+n+l) = IYH
LD HL, (SP+n) 9 r - - - - L = (SP+tn); H = (SP+n+l)

LD I X (SP+n) 11 - - - - IXL = (SP+n); | XH = (SP+n+1)
LD 1Y, (SP+n) 11 - - - - 1YL = (SP+n); |YH = (SP+n+1)
LD (I X+d),HL 11 d- - - - (IX+d) =1L; (IX+td+l) = H

LD HL, (1 X+d) 9 r s - - - - L = (IX+td); H= (IX+d+1)

LD (1Y+d),HL 13 d- - - - (lY+d) =1L; (lY+d+l) = H

LD HL, (1 Y+d) 11 rrs- - - - L =(lY+d); H=(1Y+d+1)
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18.5 16-bit Load and Store 20-bit Address

I nstruction clk A | SZVC CQperation
LDP (HL),HL 12 - - - - (H) =1L; (H+1) = H
(Adr[19:16] = A[3:0])

LDP (I X),HL 12 - - - - (IX) =L (IX+1) = H
(Adr[19:16] = A[3:0])
LDP (1Y),HL 12 - - - - (1Y) =L (IY+1) = H
(Adr[19:16] = A[3:0])
LDP HL, (HL) 10 - - - - L= (H); H= (H+1).
(Adr[19:16] = A[3:0])
LDP HL, (1 X) 10 - - - - L=(1X; H=(IX+1).
(Adr[19:16] = A[3:0])
LDP HL, (1Y) 10 - - - - L=(1Y); H=(1Y+1).
(Adr[19:16] = A[3:0])
LDP (m),HL 15 - - - - (m) =1L; (m+l) = H
(Adr[19:16] = A[3:0])
LDP (m),IX 15 - - - - (m) = IXL; (m+l) = | XH
(Adr[19:16] = A[3:0])
LDP (m),1Y 15 - - - - (m) = 1YL, (m+1l) = IYH
(Adr[19:16] = A[3:0])
LDP HL, () 13 - - - - L=(m); H=(m+l).
(Adr[19:16] = A[3:0])
LDP 1 X, () 13 - - - - IXL = (m); IXH=(m+l).
(Adr[19:16] = A[3:0])
LDP 1Y, (m) 13 - - - - 1YL= (m); I'YH = (m+1).

(Adr[19:16] = A[3:0])

Note that the LDP instructions wrap around on a 64K page boundary. Since the LDP instruc-
tion operates on two-byte values, the second byte will wrap around and be written at the
start of the page if you try to read or write across a page boundary. Thus, if you fetch or
store at address Oxn,0xFFFF, you will get the bytes located at Oxn,0xFFFF and
0xn,0x0000 instead of 0xn,0xFFFFand 0x(n+1),0x0000 as you might expect. Therefore,
do not use LDP at any physical address ending in OXFFFF.

18.6 Register to Register Moves
I nstruction clk A | SZVC Qperation

LDr,g 2 r - - - - 71 =g; r,g any of B,
C D E H L A
LD A EIR 4 fr **x - - A=ER
LD AITIR 4 fr **x - - A=1IR
LD A, XPC 4 r - - - - A=MU
LD EIR A 4 EIR=A
LDIIR A 4 IR =A
LD XPC, A 4 XPC = A
LD HL, I X 4 r HL = I X
LD HL, 1Y 4 r H = 1Y
LD I X, HL 4 I X = H
LD 1Y, HL 4 Y = HL
LD SP, HL 2 SP = HL
LD SP, I X 4 SP = 1X
LD SP, 1Y 4 SP =1Y
LD dd’', BC 4 dd’ = BC (dd’: 00-BC,

01-DE', 10-HL')
' = DE (dd’: 00-BC,
01-DE', 10-HL')

LD dd’, DE

N
o
Q
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18.7 Exchange Instructions

I nstruction clk A | SZVC Qperation
EX (SP), HL 15 r - - - - H<>(SP+l); L <-> (SP)
EX (SP), I X 15 I XH <-> (SP+1); IXL <-> (SP)
EX (SP), 1Y 15 I'YH <-> (SP+1); IYL <-> (SP)
EX AF, AF 2 AF <-> AF
EX DE , HL 2 S if (!ALTD) then DEE <-> HL
else DEE <-> HL’
EX DE , HU’ 4 S DE <-> HU
EX DE, HL 2 s if (IALTD) then DE <-> HL
el se DE <-> HU’
EX DE, HU’ 4 S DE <-> HU’
EXX 2 BC <-> BC; DE <-> DE';
HL <-> HU’
EX DE,HL
D]E] [B]C]
EX AFAF S——%
EX DEHU EX DE’,HL
o] E] [B]C

EX DE' HL

EXX - exchange HL ,HL' ,DE,DE’ ,BC,BC’

18.8 Stack Manipulation Instructions

I nstruction clk
ADD SP, d 4
POP | P 7
POP | X 9
POP |Y 9
POP zz 7
PUSH I P 9
PUSH | X 12
PUSH 1Y 12
PUSH zz 10

A
f

I SZVC

- *

18.9 16-bit Arithmetic and Logical Ops

I nstruction clk
ADC HL, ss 4
ADD HL, ss 2
ADD | X, xx 4

A
fr

fr

I SZVC
**V*

- *

- *

Operati on

SP =SP +d-- d=0 to 255
IP = (SP); SP = SP+1

IXL = (SP); I XH = (SP+1);
SP = SP+2

IYL = (SP); IYH = (SP+1);
SP = SP+2

zzl = (SP); zzh = (SP+1);
SP=SP+2 -- zz= BC, DE, HL, AF
(SP-1) = 1P, SP = SP-1
(SP-1) = I XH, (SP-2) = I XL;
SP = SP-2

(SP-1) = IYH (SP-2) = IVYL;
SP = SP-2

(SP-1) = zzh; (SP-2) = zzl;
SP=SP-2 --zz= BC, DE, HL, AF
Operati on

HL = H + ss + CF - $s=BC,
DE, HL, SP

HL = HL + ss

I X = 1X + xx - xx=BC,

DE, |X, SP
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ADD 1Y, yy

ADD SP, d
AND HL, DE
AND | X, DE
AND 1Y, DE
BOOL HL

BOCOL | X
BOCOL 1Y
DEC | X
DEC | Y
DEC ss

I NC I X
INC IY
I NC ss
MJL

HL

< X
CECEY

R
OR |
OR |

T
M

L

RR DE
RR HL
RR I X
RRI1Y
SBC HL, ss

N B D DN N B BDN A N

D

N A BMDN

A ADDNODN

fr
fr

fr

orrr
coooo

-

<r-r-r-rrr

*

* O OO

Y =1Y +yy -- yy=BC
DE, 1Y, SP

SP =SP +d-- d=0 to 255
HL = HL & DE

IX = 1 X & DE

Y = 1Y & DE

if (HL!=0) HL = 1,

set flags to match HL
if (IX!=0) IX=1
if (1Y!=0) 1y=1

IX=1X-1
lY =1Y -1
ss =ss - 1 -- ss= BC,
DE, HL, SP
IX=1X+1
lY =1Y + 1
ss = ss + 1 -- ss= BC,
DE, HL, SP

HL: BC = BC * DE, signed

32 bit result. DE unchanged
H. = HL | DE -- bitw se or
IX=1X]| DE

lY=1Y| DE

{CY,UE} :{DE,CY} o

left shift with CF

{DE, Cv} = {Cv, DE}

{HL, CY} = {CY, HL}
{I1X, CY} = {CY,Ix
{1v,cv} = {cv,1v}
HL=HL- ss- CY

(cout if (ss-CY)>hl)

18.10 8-bit Arithmetic and Logical Ops

I nstruction
ADC A, (HL)
ADC A, (1 X+d)
ADC A, (1 Y+d)
ADC A n

ADC Ar

ADD A, (HL)
ADD A, (1 X+d)
ADD A, (1 Y+d)
ADD A, n

ADD A r

AND (HL)
AND (| X+d)
AND (I Y+d)
AND n

AND r

CP* (HL)

CP* (I X+d)
CP* (1Y+d)

O© ©OUI NP, OCOOONMOOOONDIMOOOU O

=~

A
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
f
f
f

|

S
S
S

n n

*

K KKrrrmrmm<<<<K<<K<<K<<K<K<K<K<K<K<LKKL

*O OO OO0 *

*

C Operation

= + (HL) + CF
(I X+d) + CF
(1'Y+d) + CF
n + CF

r + CF
(HL)

(1 X+d)
(1'Y+d)

n

r

(HL)

& (1 X+d)

& (1Y+d)

T T TRTIT
Q@+ + + + + + + + +

>>>2>2>2>2>2>2>2>2>>>>>>>>
I
>>>>2>2>2>2>>>>>>>>
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CP* n 4 f **V* A-n

CP* r 2 f VR AT

OR (HL) 5 fr s** L0 A=A]| (H)

OR (1 X+d) 9 frs** L0 A=A]| (IX+d)

OR (1 Y+d) 9 frs** L0 A=A]| (1Y+d)

OR n 4 fr ** L0 A=A]|n

R 2 fr ** L0 A=A]|Tr

SBC* (IX+d) 9 fr s**V* A=A- (IX+td) - CY

SBC* (1Y+d) 9 frs**V* A=A- (IY+d) - CY
SBC* A (HL) 5 fr s**VvV* A=A- (H) - CY

SBC* A n 4 fr * % V* A= An-CY (cout if (r-CY)>A)
SBC* Ar 2 fr * % V* A= Ar-CY (cout if (r-CY)>A)
SUB (HL) 5 fr s**VvV* A=A- (H)

SUB (| X+d) 9 fr s**V* A=A- (IX+d)

SUB (1 Y+d) 9 fr s**V* A=A- (1Y+d)

SUB n 4 fr **x V* A=A-n

SUB r 2 fr *xrVrE O A=A-

XOR (HL) 5 fr s** L0 A=[A&~H)] | [~A & (HL)]
XOR (| X+d) 9 fr s** L0 A=[A&~(IXd)] | [~A & (IX+d)]
XOR (1 Y+d) 9 fr s** L0 A=[A&~(1Y+d)] | [~A & (1Y+d)]
XOR n 4 fr ** L0 A=[A&~n] | [~A &n]

XOR r 2 fr ** L0 A=[A&~r] | [-A & ]

* SBC and CP instruction output inverted carry. Cis set if A<Bif the oper-
ation or virtual operation is (A-B). Carry is cleared if A>=B. SUB outputs
carry in opposite sense from SBC and CP.

18.11 8-bit Bit Set, Reset and Test

I nstruction clk A | SZVC Qperation

BI T b, (HL) 7 f s-*- - (H) &bit

BIT b, (1 X+d)) 10 f s-* - - (IX+d) & bit

BIT b, (1Y+d)) 10 f s-*- - (lY+d) & bit

BIT b, r 4 f - * - - r &bit

RES b, (HL) 10 d- - - - (H) = (H) & ~bit
RES b, (I X+d) 13 d- - - - (IX+d) = (IX+d) & ~bit
RES b, (1 Y+d) 13 d- - - - (IlY+d) = (1Y+d) & ~bit
RES b, r 4 r - - - - r1r =1 & ~bit

SET b, (HL) 10 b-- - - (H) = (H) | bit

SET b, (I X+d) 13 b - - - - (IX+d) = (IX+d) | bit
SET b, (1Y+d) 13 b - - - - (1Y+d) = (1Y+d) | bit
SET b, r 4 r - - - - 1 =1 | bit

18.12 8-bit Increment and Decrement

n
N

I nstruction clk A V C Operation

|

DEC (HL) 8 f b** V- (H) = (H) - 1
DEC (1 X+d) 12 f b** V- (IX+td) = (IX+d) -1
DEC (| Y+d) 12 f b** V- (1Y+d) = (1Y+d) -1
DEC r 2 fr ** V- o r=r -1

I NC (HL) 8 f b** V- (H) = (H) +1

I NC (I X+d) 12 f b** V- (IX+td) = (IX+d) + 1
I NC (I Y+d) 12 f b** V- (IY+d) = (IY+d) + 1
INC r 2 fr ** V- or=r +1
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18.13 8-bit Fast A register Operations

I nstruction clk A | SZVC Qperation
CPL 2 r - - - - A=-A
NEG 4 fr **xy* A=0- A
RLA 2 fr * {CY,A} = {A CY}
RLCA 2 fr * A={A6,0,AT7]}; CY=A7]
RRA 2 fr * {ACY} = {CY, A
RRCA 2 fr * A={AO0],A7,1]}; CY = A0]
18.14 8-bit Shifts and Rotates
RL, RLA LC < g SLA C |-— - O
I
RR,RRA L — ' C SRL | O |—» —»C
RRC, RRCA L. | J—»C
I nstruction clk A | SZVC Qperation
RL (HL) 10 f b**L* {CY,(H)} = {(H), CY}
RL (1 X+d) 13 f b**L* {CV,(IX+d)} = {(IX+d), CY}
RL (1Y+d) 13 f b** L* {CY,(IY+d)} = {(I1Y+d),CY}
RL r 4 fr **x L * {CY,r} ={r,CY}
RLC (HL) 10 f b**L* (H) = {(H)[6,0],(H)[T7]};
CY = (HL)[7]
RLC (1 X+d) 13 f b** L* (I1X+d) = {(IX+d)[6,0],
(I X+d)[7]}; CY = (IX+d)[ 7]
RLC (1 Y+d) 13 f b**L* (1Y+d) = {(lY+d)[6,0],
(1Y+d)[7]}; CY = (1Y+d)[7]
RLC r 4 fr *x L*x ¢ ={r[6,0],r[7]}; CY =r[T7]
RR (HL) 10 f b**L* {(H),CY} ={CVY,(H)}
RR (1 X+d) 13 f b**L* {(IX+d),CY} = {CY, (I X+d)}
RR (1 Y+d) 13 f b**L* {(lY+d),CY} = {CY, (IY+d)}
RR r 4 fr **x L* {r,C¥} ={CVY,r}
RRC (HL) 10 f b**L* (H) ={(H)[O],(H)[7,1]};
CY = (HL)[0]

RRC (I X+d) 13 f b * * L *
RRC (I Y+d) 13 f b * * L *

RRC r 4
SLA (HL) 10

SLA (1 X+d) 13 f b * * L *

SLA (1Y+d) 13 f b * * L *

(1 X+d) = {(1X+d)[0],
(IX+d)[7,1]}; CY = (IX+d)[0]
(1Y+d) = {(1Y+d)[0], (
IY+d)[7,1]}; CY = (1Y+d)[0]
r={r[0],r[7,1]1}; CY =r[0]
(H) = {(HL)[6,0],0}; CY =
(HL)[7]
(1 X+d) = {(IX+d)[6, 0], O};

CY = (IX+d)[7]
(1Y+d) = {(1Y+d)[6,0], O};

CY = (1Y+d)[7]

User’s Manual

179



SLA r 4 fr * ok
SRA (HL) 10 b * *
SRA (| X+d) 13 f b *
SRA (1 Y+d) 13 f b x
SRA r 4 fr *ox
SRL (HL) 10 f b* *
SRL (| X+d) 13 f b *
SRL (I Y+d) 13 f b *
SRL r 4 fr * ok

18.15 Instruction Prefixes

I nstruction clk Al SZ
ALTD 2
| CE 2
(O] 2

18.16 Block Move Instructions

I nstruction clk Al SZ
LDD 10 d- -
LDDR 6+7i d- -
LDl 10 d- -
LDl R 6+7i d - -

r ={r[6,0],0}; CY =r[7]
(HL) = {(HL)[7],(H)[7,1]};
CY = (HL)[ 0]

(IX+d) = {(I1 X+d)[ 7],
(IX+d)[7,1]}; CY = (1 X+d)[0]
(1Y+d) = {(1Y+d)[ 7],
(1Y+d)[7,1]}; CY = (1Y+d)[0]
ro={r[7],r[7,1]}; CY =r[0]
(HL) = {0, (H)[7,1]};

CY = (HL)[ 0]

(1 X+d) = {0, (IX+d)[7,1]};
CY = (I X+d)[ 0]

(1Y+d) = {0, (1Y+d)[7,1]};
CY = (1Y+d)[ 0]

r ={0,r[7,1]};

CYy = r[0]

V C Operation
- alternate register destinatln

\Y,

*

C

* -

* -

* -

for next Instruction
I/ O external prefix
I/Ointernal prefix

Qperation

(DE) = (HL); BC = BC 1;
DE = DE-1; HL = HL-1
if {BC!= 0} repeat:
(DE) = (HL); BC = BC 1;
DE = DE+1; HL = HL+1

if {BC!= 0} repeat:

If any of the block move instructions are prefixed by an /O prefix, the destination will be
in the specified 1/0 space. Add 1 clock for each iteration for the prefix if the prefix is Ol
(internal 1/0). If the prefix is1OE, add 2 clocks plus the number of 1/0 wait states enabled.
TheV flag is set when BC transitions from 1 to O. If the V flag is not set another step is
performed for the repeating versions of the instructions. Interrupts can occur between dif-
ferent repeats, but not within an iteration equivalent to LDD or LDI. Return from the inter-
rupt isto the first byte of the instruction which isthe I/O prefix byteif thereis one.
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18.17 Control Instructions - Jumps and Calls

I nstruction
CALL m

DINZ j
JP (HL)
JP (1X)
JP (1Y)
JP f, m
JP m
JR cc, e
JR e

LCALL xpc, m
LIJP xpc, m
LRET

RET

RET f

RETI

RST v

C
1

GO ~N~NOO O

[EEY
©

1
1

I k
2

0
3

8/2

1

1

2

0

A

S ZV C Qperation

- - - - (SP-1) = PCH (SP-2) =
PC=m; SP = SP-2

- - - - B=B1 if {B!=0} PC=PC+ j

- - - - PC=H
- - - - PC=1IX
- - - - PC=1Y

- - - - if {f} PC=m

- - - - PC=m

- - - - if {cc} PC=PC + e
- - - - PC=PC+ e (if e==0 next
seq inst is executed)

PCL;

- - - - (SP-1) = XPC, (SP-2) = PCH,
(SP-3) = PCL; XPC=xpc;
PC = m; SP = (SP-3)

- - - - XPC=xpc; PC =m

- - - - PCL = (SP); PCH= (SP+1);
XPC = (SP+2); SP = SP+3

- - - - PCL =(SP); PCH= (SP+1);
SP = SP+2

if {f} PCL = (SP); PCH =

(SP+1); SP = SP+2

- - - - IP=(SP); PCL = (SP+1);
PCH = (SP+2); SP = SP+3

- - - - (SP-1) = PCH (SP-2) = PCL;

SP =SP - 2; PC={RV)
v=10, 18, 20, 28, 38 only

18.18 Miscellaneous Instructions

I nstruction
CCF

| PSET 0O

| PSET 1

| PSET 2

| PSET 3

| PRES

LD A EIR
LD A IIR
LD A, XPC
LD EIR A
LDIIR A
LD XPC, A
NOP

POP | P
PUSH | P
SCF

NONNAAEAEAEDMDMMDMDMDMDMDAMNDO

=~

A
f

fr
fr

S ZV C Qperation
- - - % CF:._

- - - - 1P ={IP[5:0], 00}
- - - - IP={IP[5:0], 01}
- - - - IP={IP[5:0], 10}
- - - - IP={IP[5:0], 11}

*okooo = EIR

*okooo =1IR

- - - - = MW

- - - - EIR=A

- - - - 1lIR=A

- - - - XPC=A
ation

S

- - - - IP={IP1:0], IP[7:2]}

P = SP+1

e
1P = (

- - - - (SP-1) =IP, SP = SP-1
1
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18.19 Privileged Instructions

The privileged instructions are described in this section. Privilege means that an interrupt
cannot take place between the privileged instruction and the following instruction.

The three instructions below are privileged.

LD SP,HL ; load the stack pointer
LD SP, 1Y
LD SP, | X

The instructions to load the stack are privileged so that they can be followed by an instruc-
tion to load the stack segment (SSEG) register without the danger of an interrupt taking
place with and incorrect association between the stack pointer and the stack segment reg-
ister. For example,

LD SP, HL
1O LD (STACKSEQ), A

The following instructions are privileged.

| PSET 0O ; shift IPleft and set priority 00 in bits 1,0

| PSET 1

| PSET 2

| PSET 3

| PRES ; rotate P right 2 bits, restoring previous priority
POP | P ; pop | P register fromstack

The instructions to modify the IP register are privileged so that they can be followed by a
return instructions that is guaranteed to execute before another interrupt takes place. This
avoidsthe possibility of an ever-growing stack.

RETI ; pops I P fromstack and then pops return address

Theinstructionr et i can be used to set both the return address and the IP in asingle
instruction. If preceded by aLD XPC, acomplete jump or call to a computed address can
be done with no possible interrupt.

LD A XPC ; get and set the XPC
LD XPC, A

Theinstruction LD XPC, Ais privileged so that it can be followed by other code setting
interrupt priority or program counter without an intervening interrupt.

BIT B,(HL) ; test a bit in nmenory

Theinstruction bit B, (HL) is privileged to make it possible to implement a semaphore
without disabling interrupts. The following sequenceisused. A bit isasemaphore, and the
first task to set the bit owns the semaphore and has a right to manipulate the resources
associated with the semaphore.

BIT B, (HL)

SET B, (HL)

JP z,ihaveit

; here | don't have it

The SET instruction has no effect on the flags. Since no interrupt takes place after the BI T
instruction, if theflag is zero that means that the semaphore was not set when tested by the
bit instruction and that the set instruction has set the semaphore. If an interrupt was
allowed between the Bl T and set instructions, another routine could set the semaphore and
two routines could think that they both owned the semaphore.
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19. DIFFERENCES RABBIT VvS. Z80/Z180
INSTRUCTIONS

The Rabbit is highly code compatible with the Z80 and Z180, and it is easy to port non 1/0
dependent code. The main areas of incompatibility are instructions that are concerned with
I/O or particular hardware implementations. The more important instructions that were
dropped from the Z80/Z180 are automatically simulated by an instruction sequence in the
Dynamic C assembler. A few fairly useless instructions have been dropped and cannot be
eadsly simulated. Code using these instructions should be rewritten.

The following Z80/Z180 instructions have been dropped and there are no exact substi-
tutes.

DAA, HALT, D, EI, IMO, IM1, IM2, OQJI, IN, QUJTO, INO, SLP, OQUTI,
IND, QUJID, INR, OIlR, INDR, OIDR, TESTIO, MT SP, RRD, RLD, CPI,
CPIR, CPD, CPDR

Most of these op codes deal with 1/0 devices and thus do not represent transportabl e code.
The only opcodes that are not processor 1/0 related are MLT SP, DAA, RRD, RLD, CPI ,

CPI R, CPD, and CPDR. MLT SPisnot apractica op code. The codes that are concerned
with decimal arithmetic, DAA, RRD, and RLD, could be simulated, but the simulation isvery
inefficient. (The bit in the status register used for half carry isavailable and can be set and
cleared using the PUSH AF and POP AF instructionsto gain access.) Usually code that uses
these instructions should be rewritten. The instructions CPI , CPI R, CPD, and CPDR are
repeating compare instructions. These instructions are not very useful because the scan
stops when equal compare is detected. Unequal compare would be more useful. They are
difficult to simulate efficiently, so it is suggested that code using these instructions be
rewritten, which in most cases should be quite easy.

The following op codes are dropped.

RST 0, RST 8, RST 30h

The remaining RST instructions are kept, but the interrupt vector isrelocated to avariable
location the base of which is established by the EIR register. RST can be simulated by a
call instruction, but thisis not done automatically by the assembler since most of these
instructions are used for debugging by Dynamic C.

The following instruction has had its op code changed.

EX (SP), HL - old opcode OE3h, new opcode - OEDh-054h
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The following instructions use different register names.

LD A EIR
LD EIR A ; was R register
LDIIR A
LD A IIR ; was | register

The following Z80/Z180 instructions have been dropped and are not supported. Alterna-

tive Rabbit instructions are provided.

Z80/2180 Instructions Dropped

Rabbit Instructions to Use

CALL CC, ADR

JR (JP)
CALL ADR
XXX

ncc, xxx ; reverse condition

TST R ((HL), n)

PUSH DE

PUSH AF

AND r ((HL), n)

POP DE get ainh
LD A d

POP DE
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20. INSTRUCTIONS IN ALPHABETICAL ORDER
WITH BINARY ENCODING

Spreadsheet Conventions
ALTD (“A” Column) Symbol Key

Flag Description
f ALTD selects alternate flags

fr ALTD selects alternate flags and register
r ALTD selects alternate register
s ALTD operation isa special case

IOl and IOE (“I” Column) Symbol Key

Flag Description
b 10l and IOE affect source and destination
d 10l and |OE affect destination
] 10l and IOE &ffect source

Flag Register Key

S|z|iuv'|cC Description

* Sign flag affected

- Sign flag not affected

* Zero flag affected

- Zero flag not affected

L L/V flag contains logical check result
\% L/V flag contains arithmetic overflow result
0 L/V flag iscleared

* L/V flag is affected

* | Carry flag is affected

- | Carry flagis not affected

0 | Carry flagiscleared

1 | Carry flagisset

The L/V (logical/overflow) flag serves adua purpose—L/V

issetto 1 for logical operationsif any of the four most signif-
icant bits of theresult are 1, and L/V isreset to O if all four of

the most significant bits of the result are O.
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Symbols

Rabbit 7180 Meaning
Bit select:
000 = hit 0, 001 = bit 1,
b b 010 = hit 2, 011 = bit 3,

100 = hit 4, 101 = hit 5,
110 = bit 6, 111 =hit 7

Condition code select:

cc cc 00=NzZ,01=2,
10=NC,11=C

d d 7-bit (signed) displacement. Expressed in two’'s complement.

dd ww | Word register select destination: 00=BC, 01 =DE, 10=HL, 11 =SP

dd’ Word register select alternate;: 00 = BC', 01 =DE’, 10 = HL’

e j 8-hit (signed) displacement added to PC.
Condition code select:
000 = NZ (non zero), 001 = Z (zero),

f f 010 = NC (non carry), 011 = C (carry),
100=LZ" (logical zero), 101 = LO (logical one),
110 = P (sign plus), 111 =M (sign minus)

m m MSB of a16-bit constant.

m m 16-bit constant.

n n 8-hit constant or LSB of a 16-bit constant.
Byte register select:
000 =B, 001=C,

r, g |g, g |010=D, 011 =E,

100 =H, 101 =L,
111 =A

ss ww | Word register select (source): 00=BC, 01 =DE, 10=HL, 11=SP
Restart address select:

v v 010 = 0020h, 011 = 0030h,
100 = 0040h, 101 = 0050h,
111 = 0070h

XX xx | Word register select: 00=BC, 01 =DE, 10=1X, 11 =SP

yy yy Word register select: 00=BC, 01 =DE, 10=1Y,11=SP

zz zz |Wordregister select: 00=BC, 01 =DE, 10=HL, 11 = AF

Logical zero if all four of the most significant bits of the result are 0.

T Logical oneif any of the four most significant bits of the result are 1.
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 SzvC
ADC A, (HL) 10001110 5 fr s * * VvV~
ADC A, (I X+d) 11011101 10001110 ----d--- 9 fr s * * V=*
ADC A, (IY+d) 11111101 10001110 ----d--- 9 fr s * * V=*
ADC A/ n 11001110 ----n--- 4 fr S VA
ADC A, r 10001-r - 2 fr S VA
ADC HL, ss 11101101 O01ss1010 4 fr S VA
ADD A, (HL) 10000110 5 fr s * * Vv~
ADD A, (I X+d) 11011101 10000110 ----d--- 9 fr s * * V=*
ADD A, (IY+d) 11111101 10000110 ----d--- 9 fr s * * V=*
ADD A n 11000110 ----n--- 4 fr S VA
ADD A, r 10000-r - 2 fr S VA
ADD HL, ss 00ss1001 2 fr - - - %
ADD | X, xX 11011101 00xx1001 4 f - - - *
ADD 1Y, yy 11111101 00yy1001 4 f - - - *
ADD SP, d 00100111 ----d--- 4 f - - - *
ALTD 01110110 2 - - - -
AND (HL) 10100110 5 fr s**LO
AND (| X+d) 11011101 10100110 ----d--- 9 fr s** LO
AND (| Y+d) 11111101 10100110 ----d--- 9 fr s** LO
AND HL, DE 11011100 2 fr ** L0
AND | X, DE 11011101 11011100 4 f ** L0
AND 1Y, DE 11111101 11011100 4 f ** L0
AND n 11100110 ----n--- 4 fr ** L0
AND r 10100-r - 2 fr ** L0
BIT b, (HL) 11001011 01-b-110 7 f s - * - -
BIT b, (I X+td)) 11011101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b, (IY+d)) 11111101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b, r 11001011 O01-b--r- 4 f - - -
BOOL HL 11001100 2 fr ** 00
BOOL | X 11011101 11001100 4 f ** 00
BOOL |Y 11111101 11001100 4 f ** 00
CALL mm 11001101 ----n--- ----Mm-- 12 - - - -
CCF 00111111 2 f - - - %
CP (HL) 10111110 5 f s**V*
CP (I X+d) 11011101 10111110 ----d--- 9 f s**V*
CP (1Y+d) 11111101 10111110 ----d--- 9 f s**V*
CP n 11111110 ----n--- 4 f R VA
CPr 10111-r- 2 f O VA
CPL 00101111 2 r - - - -
DEC (HL) 00110101 8 f b** V-
DEC (| X+d) 11011101 00110101 ----d--- 12 f b * * V-
DEC (1 Y+d) 11111101 00110101 ----d--- 12 f b * * V-
DEC I X 11011101 00101011 4 - - - -
DEC 1Y 11111101 00101011 4 - - - -
DEC r 00-r-101 2 fr R VA
DEC ss 00ss1011 2 r - - - -
ss= 00-BC, 01-DE, 10-HL, 11-SP
DINZ | 00010000 --(j-2)- 5 r - - - -
EX (SP), HL 11101101 01010100 15 r - - - -
EX (SP), 1 X 11011101 11100011 15 - - - -
EX (SP), 1Y 11111101 11100011 15 - - - -
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Byte 2

11100011
11100011

00110100
00110100
00100011
00100011

01000110
01010110
01001110
01011110
01011101

11101001
11101001
----n---
----n---
__(e_2)_

I nstruction Byte 1

EX AF, AF’ 00001000
EX DE, HL 11101011
EX DE' , HL 11100011
EX DE, HL’ 01110110
EX DE , HL’ 01110110
EXX 11011001
I NC (HL) 00110100
I NC (I X+d) 11011101
I NC (I Y+d) 11111101
INC I X 11011101
INC IY 11111101
INC r 00-r-100
I NC ss 00ss0011

ss= 00-BC, 01-DE, 10-HL, 11-SP

| CE 11011011
I 11010011
| PSET 0 11101101
| PSET 1 11101101
| PSET 2 11101101
| PSET 3 11101101
| PRES 11101101
JP (HL) 11101001
JP (1 X) 11011101
JP (1Y) 11111101
JP f,m 11-f-010
JP mm 11000011
JR cc, e 001cc000
JR e 00011000

--(e-2)-

Byte 3

Note: |If byte following op code is zero
If byte is -2 (11111110) jr is to itself.
--Xxpc--- 19 - - - -

i s executed.
LCALL xpc, m
LD (BO), A
LD (DE), A
LD (HL), n
LD (HL),r
LD (HL+d), HL
LD (1 X+d), HL
LD (I X+d), n
LD (I X+d),r
LD (1Y+d), HL
LD (IY+d),n
LD (1Y+d),r
LD (m), A
LD (m), HL
LD (m), I X
LD (m), 1Y
LD (m), ss
LD (SP+n), HL
LD (SP+n), I X
LD (SP+n), 1Y

11001111
00000010
00010010
00110110
01110-r-
11011101
11110100
11011101
11011101
11111101
11111101
11111101
00110010
00100010
11011101
11111101
11101101
11010100
11011101
11111101

____n___

____n___

11110100
oo d---
00110110
01110-r-
11110100
00110110
01110-r-

00100010
00100010
01ss0011
____n___
11010100
11010100

____m__

Byte 4

clk A I SzvVvC

2

2 S - - - -
2 S - - - -
4 s - - - -
4 s - - - -
2 - - - -
8 f Db**V-
12 f b* * V-
12 f b* * V-
4 - - - -
4 - - - -
2 fr A
2

g ~N~NOoOOR_B_MBMMDMDMDIDDNODN
1
1
1
1

next sequential instruction

;
;

;

6

13
11
11
10
13
11
10
10
13
15
15
15
11 -
13 - -
13 - -

00 0000000000000
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 SzvC
LD A (BQ) 00001010 6 ros-- - -
LD A, (DE) 00011010 6 ros-- - -
LD A (m) 00111010 ----n--- ----M-- 9 ros-- - -
LD A EIR 11101101 01010111 4 fr *oE o
LD A 1IR 11101101 01011111 4 fr *oE o
LD A XPC 11101101 01110111 4 r - - - -
LD dd, (m) 11101101 01dd1011 ----p--- ----M-- 13 r s - - - -
LD dd’', BC 11101101 01ddio01 4 - - - -
LD dd', DE 11101101 01ddooo01 4 - - - -
LD dd, m 00dd0o001 ----n--- ----mM-- 6 r - - - -
LD bc, m 00000001

LD de, m 00010001

LD hl, m 00100001

LD sp, m 00110001 ...

LD EIR A 11101101 01000111 4 - - - -
LD HL, (HL+d) 11011101 11100100 ----d--- 11 r s - - - -
LD HL, (I X+d) 11100100 ----d--- 9 ros-- - -
LD HL, (I Y+d) 11111101 11100100 ----d--- 11 r s - - - -
LD HL, (m) 00101010 ----n--- ----mMm-- 11 r s - - - -
LD HL, (SP+n) 11000100 ----n--- 9 r - - - -
LD HL, I X 11011101 01111100 4 r - - - -
LD HL, 'Y 11111101 01111100 4 r - - - -
LDIIR A 11101101 01001111 4 - - - -
LD I X, () 11011101 00101010 ----n--- ----M-- 13 S - - - -
LD I X, (SP+n) 11011101 11000100 ----n--- 11 - - - -
LD I X, HL 11011101 01111101 4 - - - -
LD I X, m 11011101 00100001 ----n--- ----M-- 8 - - - -
LD 1Y, (m) 11111101 00101010 ----n--- ----M-- 13 s - - - -
LD 1Y, (SP+n) 11111101 11000100 ----n--- 11 - - - -
LD 1Y, HL 11111101 01111101 4 - - - -
LD 1Y, m 11111101 00100001 ----n--- ----M-- 8 - - - -
LD r, (HL) 01-r-110 5 ros- - - -
LD r, (I X+d) 11011101 O021-r-110 ----d--- 9 ros-- - -
LD r, (1Y+d) 11111101 O021-r-110 ----d--- 9 ros-- - -
LDr,g 01l-r---g 2 r - - - -
LD r,n 00-r-110 ----n--- 4 r - - - -
LD SP, HL 11111001 2 - - - -
LD SP, I X 11011101 11111001 4 - - - -
LD SP, 1Y 11111101 11111001 4 - - - -
LD XPC, A 11101101 01100111 4 - - - -
LDD 11101101 10101000 10 d- - * -
LDDR 11101101 10111000 6+7i d- - * -
LDl 11101101 10100000 10 d - - * -
LD R 11101101 10110000 6+7i d - - * -
LDP (HL), HL 11101101 01100100 12 - - - -
LDP (1 X), HL 11011101 01100100 12 - - - -
LDP (1Y), HL 11111101 01100100 12 - - - -
LDP (mm), HL 11101101 01100101 ----p--- ----Mt-- 15 - - - -
LDP (m), !X 11011101 01100101 ----n--- ----Mm-- 15 - - - -
LDP (m),lY 11111101 01100101 ----n--- ----Mm-- 15 - - - -
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 SzvC
LDP HL, (HL) 11101101 01101100 10 - - - -
LDP HL, (I X) 11011101 01101100 10 - - - -
LDP HL, (1Y) 11111101 01101100 10 - - - -
LDP HL, (mm) 11101101 01101101 ----n--- ----Mm-- 13 - - - -
LDP | X, (mm) 11011101 01101101 ----n--- ----Mm-- 13 - - - -
LDP 1Y, (m) 11111101 01101101 ----n--- ----Mm-- 13 - - - -
LJP nbr, m 11000111 ----n--- ----m-- --nbr--- 10 - - - -
LRET 11101101 01000101 13 - - - -
MJL 11110111 12 - - - -
NEG 11101101 01000100 4 fr S VA
NOP 00000000 2 - - - -
OR (HL) 10110110 5 fr s**LO
OR (I X+d) 11011101 10110110 ----d--- 9 fr s**LO
OR (1Y+d) 11111101 10110110 ----d--- 9 fr s**LO
OR HL, DE 11101100 2 fr ** L0
OR | X, DE 11011101 11101100 4 f ** L0
OR 1Y, DE 11111101 11101100 4 f ** L0
OR n 11110110 ----n--- 4 fr ** L0
R 10110-r- 2 fr ** L0
POP I P 11101101 01111110 7 - - - -
POP | X 11011101 11100001 9 - - - -
POP IY 11111101 11100001 9 - - - -
POP zz 11zz0001 7 r - - - -
PUSH | P 11101101 01110110 9 - - - -
PUSH | X 11011101 11100101 12 - - - -
PUSH 1Y 11111101 11100101 12 - - - -
PUSH zz 11zz0101 10 - - - -
RES b, (HL) 11001011 10-b-110 10 d- - - -
RES b, (I X+d) 11011101 11001011 ----d--- 10-b-110 13 d- - - -
RES b, (I Y+d) 11111101 11001011 ----d--- 10-b-110 13 d- - - -
RES b, r 11001011 10-b--r- 4 r - - - -
RET 11001001 8 - - - -
RET f 11-f-000 8/2 - - - -
RETI 11101101 01001101 12 - - - -
RL (HL) 11001011 00010110 10 f b * * L *
RL (I X+d) 11011101 11001011 ----d--- 00010110 13 f b * * L *
RL (1Y+d) 11111101 11001011 ----d--- 00010110 13 f b * * L *
RL DE 11110011 2 fr [
RL r 11001011 00010-r- 4 fr O
RLA 00010111 2 fr - - - %
RLC (HL) 11001011 00000110 10 f b * * L *
RLC (| X+d) 11011101 11001011 ----d--- 00000110 13 f b * * L *
RLC (1 Y+d) 11111101 11001011 ----d--- 00000110 13 f b * * L *
RLC r 11001011 00000-r- 4 fr O
RLCA 00000111 2 fr - - - %
RR (HL) 11001011 00011110 10 f b * * L *
RR (| X+d) 11011101 11001011 ----d--- 00011110 13 f b * * L *
RR (I Y+d) 11111101 11001011 ----d--- 00011110 13 f b * * L *
RR DE 11111011 2 fr [
RR HL 11111100 2 fr [ T
RR I X 11011101 11111100 4 f O
RRI1Y 11111101 11111100 4 f O
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I nstruction Byte 1

RR r 11001011
RRA 00011111
RRC (HL) 11001011
RRC (| X+d) 11011101
RRC (| Y+d) 11111101
RRC r 11001011
RRCA 00001111
RST v 11-v-111
SBC (| X+d) 11011101
SBC (| Y+d) 11111101
SBC A, (HL) 10011110
SBC A, n 11011110
SBC A r 10011-r-
SBC HL, ss 11101101
SCF 00110111
SET b, (HL) 11001011
SET b, (1 X+d) 11011101
SET b, (1Y+d) 11111101
SET b, r 11001011
SLA (HL) 11001011
SLA (| X+d) 11011101
SLA (1Y+d) 11111101
SLA r 11001011
SRA (HL) 11001011
SRA (| X+d) 11011101
SRA (| Y+d) 11111101
SRA r 11001011
SRL (HL) 11001011
SRL (| X+d) 11011101
SRL (1 Y+d) 11111101
SRL r 11001011
SUB ( HL) 10010110
SUB (| X+d) 11011101
SUB (1 Y+d) 11111101
SUB n 11010110
SUB r 10010-r -
XOR ( HL) 10101110
XOR (1 X+d) 11011101
XOR (1 Y+d) 11111101
XOR n 11101110
XOR r 10101-r-
ZI NTACK (interrupt)

Byte 4

00001110
00001110

11-b-110
11-b-110

00100110
00100110

00101110
00101110

00111110
00111110

Byte 2 Byte 3
00011-r-

00001110
11001011 ----d---
11001011 ----d---
00001-r -

[v=2,3,4,5,7 only]

10011110 ----d---
10011110 ----d---
____n___
01ss0010
11-b-110
11001011 ----d---
11001011 ----d---
11-b--r-

00100110
11001011 ----d---
11001011 ----d---
00100-r -

00101110
11001011 ----d---
11001011 ----d---
00101-r-

00111110
11001011 ----d---
11001011 ----d---
00111-r-

10010110 ----d---
10010110 ----d---
____n___
10101110 ----d---
10101110 ----d---

____n___

clk A

4
2

10
13
13
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o

fr
fr
f
f
f
fr
fr

fr
fr
fr
fr
fr
fr
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APPENDIX A.

A.1 The Rabbit Programming Port

The programming port provides a standard physical and electrical interface between a
Rabbit-based system and the Dynamic C programming platform. A special interface cable
and converter connects a PC serial port to the programming port. The programming port is
implemented by means of a 10-pin standard 2 mm connector. (Of course the user can
change the physical implementation of the connector if he so desires.) With this setup the
PC can communicate with the target, reset it and reboot it. The DTR line on the PC serial
interface is used to drive the target reset line, which should be drivable by an external
CMOS driver. The STATUS pinis used to by the Rabbit-based target to request attention
when a breakpoint is encountered in the target under test. The SMODE pins are pulled up
by a+5V/+3V level from the interface. They should be pulled down on the board when
theinterface isnot in use by approximately 5 kQ resistorsto ground. The target under test
providesthe +5 V or +3 V to the interface cable which is used to power the RS-232 driver
and receiver.

PROGRAMMING PORT PIN ASSIGNMENTS
(Rabbit PQFP pins are shown in parenthesis)
|| @2 1. RXA(51) — — — — — W\ﬂ
3@ @ |4 2. GND ~50 kO
e ®ls 3. CKLKA (94) — — — — —AAA~ +
4. +5V/+3V sk &3
e @8 5 REE ==—=—=== NN +
os/®@ @0 6. TXA (54)
7. n.c.
Programming Port 8. STATUS (output) (38) .,
Pin Numbers 9. SMODEO (36) — == 4\/\/\/- GND
10. SMODE1 (35) — — — J\A/\r GND

Figure A-1. Rabbit Programming Port
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A.2 Use of the Programming Port as a Diagnostic/Setup Port

The programming port, which is already in place, can serve as a convenient communica
tions port for field setup, diagnosis or other occasional communication need (for example,
asadiagnostic port). There are several ways that the port can be automatically integrated
into the user’s software scheme. If the purpose of the port is simply to perform a setup
function, that is, write setup information to flash memory, then the controller can be reset
through the programming port, followed by a cold boot to start execution of a special pro-
gram dedicated to this functionality.

The standard programming cable connects the programming interface to a PC program-
ming port. The /RESET line can be asserted by manipulating DTR on the PC seria port
and the STATUS line can be read by the PC as DSR on the serial port. The PC can restart
thetarget by pulsing reset and then, after a short delay, sending aspecial character string at
2400 bps. To simply restart the BIOS, the string 80h, 24h, 80h can be sent. When the
BIOS s started, it can tell whether the PROG connector on the programming cableis con-
nected because the SMODE1, SMODEQ pins are sensed as high. Thiswill cause the
BIOSto think that it should enter programming mode. The Dynamic C programming
mode then can have an escape message that will enable the diagnostic serial port function.

Another approach to enabling the diagnostic port is to poll the serial port periodically to
see if communication needs to begin or to enable the port and wait for interrupts. The
SMODE pins can be used for signaling and can be detected by a poll. However, recall that
the SMODE pins have a special function after reset and will inhibit normal reset behavior
if not held low. The pull-up resistors on RXA and CLKA prevent spurious data reception
that might take place if the pins floated.

If the clocked serial mode is used, the serial port can be driven by having two toggling
lines that can be driven and one line that can be sensed. This alows a conversation with a
device that does not have an asynchronous serial port but that has two output signal lines
and one input signal line.

Theline TXA (also called PC6) is zero after reset if cold boot modeis not enabled. A pos-
sible way to detect the presence of acable on the programming port isfor the cable to con-
nect TXA to one of the SMODE pins and then test for the connection by raising PC6 and
reading the SMODE pin after the cold boot mode has been disabled.

A.3 Alternate Programming Port

The programming port uses serial port A. If the user needsto use serial port A in an appli-
cation, an alternate method of programming is possible using the same 10-pin program-
ming port. For his own application the user should use the alternate I/O pinsfor port A
that share pinswith parallel port D. The TXA and RXA pinson the 10-pin programming
port are then a parallel port output and parallel port input using pins 6 and 7 on parallel
port C. Using these two ports plusthe STATUS pin as an output clock, the user can create
asynchronous clocked communication port using instructionsto toggle the clock and data.
Another Rabbit-based board can be used to trandate the clocked serial signal to an asyn-
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chronous signal suitable for the PC. Since the target controls the clock for both send and
receive, the data transmission proceeds at arate controlled by the target board under
development.

This scheme does not allow for an interrupt, and it is not desirable to use up an external
interrupt for this purpose. The serial port may be used, if desired, During program load
because there is no conflict with the user’s program at compile load time. However, the
user’s program will conflict during debugging. The nature of the transmissions during
debugging is such that the user program starts at a break point or otherwise wants to get
the attention of the PC. The other type of message is when the PC wantsto read or write
target memory while the target is running.

The target toggling the clock can simply send a clocked serial message to get the attention
of the PC. Theintermediate communications board can accept these unsolicited messages
using its clocked serial port. To prevent overrunning the receiver, the target can wait for a
handshake signal on one of the SMODE lines or there can be suitable pre-arranged delays.

If the PC wants attention from the target it can set aline to request attention (SMODE).
The target will detect thisline in the periodic interrupt routine and handle the complete
message in the periodic interrupt routine. This may slow down target execution, but the
interrupts will be enabled on the target while the message is read. The intermediate board
could split long messages into a series of shorter messages if thisis a problem.

A.4 Suggested Rabbit Crystal Frequencies

Table 15-2 provides alist of suggested Rabbit operating frequencies. The crystal can be
half the operating frequency if the clock doubler is used up to approximately 29.5 MHz.
Beyond this operating clock speed, it is necessary to use an X1 crystal or an external oscil-
lator because asymmetry in the waveform generated by the oscillator becomes a variation
in the clock speed if the clock speed is doubled.
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APPENDIX B.

B.1 Rabbit 2000 Revisions

Sinceits release, the Rabbit 2000 microprocessor has gone through a number of revisions.
The revisions reflect bug fixes, improvements, and the introduction of new features. All
Rabbit 2000 revisions are pin-compatible and transparently replace previous versions of
the chip.

The Rabbit 2000 has been supplied in the following versions.

1. Original R2000—identified by 1 Q2T on the package. This original Rabbit 2000 began
shipping in November,1999, and was phased out in January, 2002. There were several
bugs:

(@) Certain instructions did not function correctly as described in Technical Note
TN302, Rabbit 2000 I nstruction Bug. The Dynamic C compiler correctsthis
situation automatically.

(b) The external interrupt inputs had to be tied together with aresistor as described
in Technical Note TN301, Rabbit 2000 Microprocessor | nterrupt Problem.

(c) Wait states did not function properly when used to access code in slower mem-
ories because certain instructions failed in these circumstances. Thisbug is
fixed in the R2000A through R2000C revisions.

2. First revision (R2000A)—identified by 1Q3T on the package. This version began
shipping in January, 2002. All the bugsin the original R2000 were fixed, and additional

new features were added:
(a) Support for separate | & D space.

(b) An additional register in the serial port hardware simplifies sending out an
additional stop bit or parity bit.

(c) Improvements in the battery-backup hardware alow for implementation of a
simplified circuit for backing up the real-time clock and associated static
RAM. A new bug exists in the block copy instruction between separate | & D
spaces that is only active when the separate | & D spaceisenabled. Thisbugis
automatically corrected by Dynamic C.
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3. Second revision (R2000B)—identified by 1Q4T on the package. This version began
shipping in samples and very low volume to select customers having problems with
EMI in April, 2002. This part was phased out and will be replaced by the R2000C for
volume orders. This version has the clock spectrum spreader, but lacks the early 1/0
enable, which resultsin tight specifications for memory I/0O enable. The clock doubler
unit uses codes incompatible with earlier revisions. Furthermore, a problem with
LDIR/LDDR operation and Instruction/Data split was discovered. These problems are
all corrected in the R2000C.

4. Third revision (R2000C)—identified by 1 Q5T on the package. Z-World and Rabbit
Semiconductor products using the R2000 chip will begin using the R2000C chipin
November, 2002. This version is the same as the R2000B, except that the early |/O
enable is implemented and the clock doubler codes are compatible with earlier ver-
sions. Although the LDIR/LDDR bug outlined in the Rabbit 2000B description isfixed,
anew bug related to block move operations and wait states was discovered. Thisbugis
automatically corrected by Dynamic C.
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B.2 Discussion of Fixes and Improvements

Table B-1 lists bug fixes, improvements, and additions for the various revisions of the

Rabbit 2000.

Table B-1. Summary of Rabbit 2000 Fixes and Improvements

Description

Rabbit
2000

(1Q2T)

Rabbit
2000A

(1Q3T)

Rabbit
2000B

(1Q4T)

Rabbit
2000C

(1QST)

ID Registersfor version/revision identification.

X

X

X

X

Added Long Stop Register for asynch 9-bit operation.

Added clocked serial command for full-duplex operation.

Improved battery-backup hardware.

Added support for Instruction/Data split.

Implemented write inhibit (/WEQ) after reset.

Chip selectsinactive during internal 1/0.

Corrected external interrupt input bug.

Corrected 101/IOE prefix bug.

Corrected DDCB/FDCB instruction bug.

Corrected wait-state bug.

X | X | X | X| X| X| X|X| X| X

Corrected LDIR/LDDR Instruction/Data split bug.

Added clock spectrum spreader module.

X | X | X | X| X| X| X| X|X|X| X| X

Added early /O enable feature.

X | X | X| X| X| X| X|X|X|X|X]| X|X
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B.2.1 Rabbit Internal /O Registers

Table B-2 summarizes the reset state of the new 1/0 registers added in the Rabbit 2000
revisions.

Table B-2. Reset State of Rabbit 2000x I/O Registers

Register Name I?;e;g\?.t Mnemonic Ad:j/(r)ess R/W | Reset
Global Clock Modulator O Register B-C GCMOR Ox0A W | 00000000
Global Clock Modulator 1 Register B-C GCM1R 0x0B W | 00000000
Memory Bank 0 Control Register A-C MBOCR 0x14 W | 00001000
Memory Timing Control Register C MTCR 0x19 W | xxxx0000
Global CPU Configuration Register A-C GCPU O0x2E R | 0xx00000
R2000 Global Revision Register 0xx00000
R2000A Global Revision Register 0xx00001
A-C GREV Ox2F R
R2000B Global Revision Register 0xx00010
R2000C Global Revision Register 0xx00011
Seria Port A Long Stop Register A-C SALR OXC2 | RIW | XXXXXXXX
Serial Port B Long Stop Register A-C SBLR 0XD2 | RIW | XXXXXXXX
Serial Port C Long Stop Register A-C SCLR OXE2 | RIW | XXXXXXXX
Seria Port D Long Stop Register A-C SDLR OxF2 RIW | XXXXXXXX
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B.2.2 Revision-Level ID Register

Two read-only registers are provided to allow software to identify the Rabbit microproces-
sor and recognize the features and capabilities of the chip. Five bitsin each of these regis-
ters are unique to each version of the chip. One register identifies the CPU (GCPU), and
the other register isreserved for revision identification (GREV). The CPU identification
(GCPU) of all revisions of the Rabbit 2000 microprocessor is the same. Rabbit 2000 revi-
sions are differentiated by the value in the GREV register.

Table B-3 summarizes the processor identification information for the different Rabbit

2000 versions.

Table B-3. Rabbit 2000 Revision ldentification Information

Processor Revision Pack_age G || Ea
Identifier [4:0] [4:0]

Rabhbit 2000 1Q2T 00000 | 00000

Rabbit 2000A 1Q3T 00000 | 00001

Rabhbit 2000B 1Q4T 00000 | 00010

Rabhit 2000C 1Q5T 00000 | 00011

Details of the CPU ID registers are listed in Table B-4 and Table B-5.

Table B-4. Global CPU Register

Global CPU Register (GCPU) (Address = 0x2E)
Bit(s) Value Description
7 0 Program fetch as a function of the SMODE pins.
(read only) |1 Ignore the SMODE pins program fetch function.
6:5 read These bits report the state of the SMODE pins.
4.0 00001 CPU identifier for the Rabbit 2000 microprocessor
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Table B-5. Global Revision Register

Global Revision Register (GREV) (Address = 0x2F)
Bit(s) Value Description

7 0 Program fetch as a function of the SMODE pins.
(read only) |1 Ignore the SMODE pins program fetch function.
6.5 read These hits report the state of the SMODE pins.

00000 Revision identifier for the Rabbit 2000

00001 Revision identifier for the Rabbit 2000A
0 00010 | Revision identifier for the Rabbit 20008

00011 Revision identifier for the Rabbit 2000C
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B.2.3 Serial Port Changes

Two features were added to the Rabbit 2000 serial port hardware in revisions A—C to
improve and simplify asynchronous serial and clocked serial communication.

Asynchronous Serial Port

In the asynchronous transmission mode, serial data are transmitted in the following order.

Table B-6. Asycnchronous Serial Data Transmission Order

. Stop Bit or .
Start Data Bits Special Flag Stop Bit
stop bit —
stop bit stop hit
start bit 7 or 8 data bits
addressflag stop hit
parity bit stop bit

In the original R2000 it was difficult to transmit the additional stop bit. This could only be
done by inserting atime delay before the next byte was transmitted. An additional register,
the long stop register, was added in revisions A—C. The register serves as an aternate
data-out register, and data stored in this register will be transmitted with 2 stop bits (high
level at the Tx pin). This simplifiesimplementing “9th bit” protocols as well as sending
parity for compatibility with legacy systems. With the new register, data may be conve-
niently transmitted with either a“1” or “0” bit inserted following the last data bit, and that
bit will then be followed by a stop bit.

Section 12.6 and Section 12.7 provide additional information about asynchronous serial
data transmission.

The Seria Port x Long Stop Register (SXLR) isonly present in revisions A—C.

Table B-7. Long Stop Register, All Ports

Serial Port x Long Stop Register (SALR) (Address = 0xC2)
(SBLR) (Address = 0xD2)
(SCLR) (Address = OxE2)
(SDLR) (Address = 0xF2)
Bit(s) Value Description
Read Returns the contents of the receive buffer.
70 Write Loads the transmit buffer with an address byte, marked with a“one” address bit,
for transmission.
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Synchronous Serial Port

To initiate basic sending or receiving in the clocked serial mode, a command must be
issued by writing to bits (7,6) of the control register for each byte sent or received. There
isone command isto send a byte, and a different command to receive a byte. For full-
duplex communication, it is necessary that a Tx command be issued first, followed within
one-half bit time by the Rx command. The new feature added to revisions A—C contains a
command that initiates a transmit and receive at the same time for better support of full-
duplex communication.

Table B-8. Serial Port Control Register Ports A and B

Serial Port x Control Register (SACR) (Address = 0xC4)
(SBCR) (Address = 0xD4)
Bit(s) Value Description
7.6 00 No operation. These bits are ignored in the asynch mode.
01 In clocked serial mode, start a byte receive operation.
10 In clocked serial mode, start a byte transmit operation.

In clocked serial mode, start a byte transmit operation and a byte receive
11 operation simultaneously.

Only availablein revisions A—C

5.4 00 Parallel Port Cisused for input.
01 Parallel Port D is used for inpuit.
1x Disable the receiver input.
3.2 00 Asynch mode with 8 bits per character.
o1 Asynch mode with 7 bits per character. In this mode the most significant bit of a

byteisignored for transmit, and is always zero in receive data.

Clocked seria mode with external clock.
10 Serial Port A clock ison Parallel Port PB1
Serial Port B clock is on Parallel Port PBO

Clocked serial mode with internal clock.
11 Serial Port A clock ison Parallel Port PB1
Serial Port B clock is on Parallel Port PBO

1:0 00 The Serial Port interrupt is disabled.
01 The Seria Port uses Interrupt Priority 1.
10 The Seria Port uses Interrupt Priority 2.
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B.2.4 Improved Battery-Backup Circuit

Improvements were made in revisions A—C to reduce the internal power consumption of
the RTC circuit. In addition, external circuitry was designed to further reduce power con-
sumption by the overall oscillator circuit in board-level products based on the Rabbit
2000.

L ow-Power Oscillator Design

Anexternal low-current oscillator can be built using an inexpensive single-gate (tiny logic)
unbuffered inverter. The current consumption of this circuit is about 4 pA witha2 V sup-
ply. Using this circuit, oscillation continues even when the voltage dropsto 0.8 V, and
oscillation isstill very strong at 1.2 V. The oscillator should have its exposed circuit traces
conformally coated to prevent the possibility of loading the circuit by conduction on the
PC board surface in amoist atmosphere. (Rabbit Semiconductor has published an applica-
tion note on conformal coating, Technical Note TN303, Conformal Coatings.)

__, To Rabbit 2000
XTALA1

V_0SC 330 kQ C1

AMA— (]
74AHC1GU04 33 pF =

22 kQ 47 kQ
22 MQQ == 32.768 kHz

C2

| ]

I
3 pF* J='

*may be left out

Figure B-1. Low-Power 32.768 kHz Oscillator Circuit

The capacitors on either side of the crystal provide the load capacitance, which is specified
by the crystal manufacturer. Typically the load capacitance is about 12 pF. Thisisthe

capacitance that should be in parallel with the crystal for it to operate at the specified fre-
guency. C1 and C2 provide thisload capacitance. The formulafor the load capacitanceis

_(CnCc2+C)
L~ C1+(C2+C) * Sstray

Thisisjust the formulathe capacitance of two capacitors in series plus any stray capaci-
tance in the board layout, perhaps 2 pF. Note that the input capacitance of the gate (Ci;,)
must also be taken into account. The gate input capacitance is not constant, but is afunc-
tion of frequency. Thusif it is measured, it should be done with a sine-wave generator
operating at 32 kHz. The output capacitance is not relevant because the 330 kQ resistor
isolates it from the crystal. If C2 is made smaller, thiswill increase the voltage swing on
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the gate input and allow the oscillator to operate at alower voltage. This oscillator will
start at about 1.2 V and operate down to about 0.75 V. The 47 kQ resistor limits the short-
circuit current when the CMOS gate is switching, and thus limits the overall current con-
sumption. The 330 kQ resistor is needed to limit crystal drive at higher operating voltages,
but if the 330 kQ resistor istoo large, it will adversely affect low-voltage operation.

Typical 32.768 kHz crystals are specified for amaximum drive level of 1 uW. A modest
overdrive, perhaps 100% over this limit, will most likely have not any adverse effects
except to cause the crystal to age more rapidly than specified. Aging isagradual change of
frequency of about 3 parts per million, and is most significant in the first few months of

operation. The drive power can be computed from P = (I2) * R, wherel isthe RMSAC
current and R is the effective resistance of the crystal. Typical valuesfor R are 20 kQ for
32.768 kHz turning-fork crystals. Maximum values are often specified as 35 kQ or 50 kQ.
If the effective resistance is 20 kQ, then 1 uW of power isreached when | =7 pA (RMS).
Itislogical to usethetypical effective resistance rather than the maximum total resistance
in computing drive power. If aparticular crystal has a higher resistance, this indicates that
itislosing more energy on each oscillation, perhaps because of surface contamination, and
thus requires more power to sustain the same amplitude of physical flexure of the quartz.
Thusthe stress on the quartz will not be greater even though the drive power is greater for
aunit that happensto have an effective resistance of 35 kQ rather than the typical value of
20 kQ. The current can be measured directly with a sensitive current probe, but it is easier
to calculate the current by measuring the voltage swing at the gate input with alow-capac-
itance oscilloscope probe. The RM S voltage at this point is related to the RM S current by
the relationship

I'=Vims™* W* Ciotal

where

Ciotal = C2+ Cj + Cyrope

w = 2m* 32768

Vims = 0.707 * Vj,
If Ciotal = 12 pF, and the effective resistance is 20 kQ, then the current (in pA) and the
drive power (in uW) are given by

| =25% Ve

P=0.125* (Vi)
or

|=1.75* V.,

P=0.061% (V)2

For a5V p-p swing, the power is 1.5 pW. The power is 1.0 uW for 4V p-p, and the power is
0.5uW for 3V p-p.

TN235, External 32.768 kHz Oscillator Circuits, provides further information on oscilla
tor circuits and crystals.

206 Rabbit 2000 Microprocessor



B.2.5 Added Support for Instruction/Data Split

Thisoption is available on revisions A—C. Code generated for the R2000A will run on the
R2000B or 2000C, but not vice versa. The separate | & D space allows the root segment
and the data segment, normally the first 52K of the 64K address space, to be mapped into
separate spaces for instruction fetch (I space) and data fetch or store (D space). The advan-
tage of thisisthat the size of the root data space can be expanded up to 52K without inter-
fering with the root code space. The root code space, which has certain special properties,
particularly faster subroutine linkage, can be expanded to fill up to 52K of root space. For-
merly both spaces had to share the 52K of space. Separate | & D space is supported by
Dynamic C version 7.30 or later. The data space is normally split into separate parts, one
part for constants mapped to flash memory and the other part for variables mapped to
RAM. The code space is mapped into the first 52K of flash memory. This option expands
the size of root data and code while preserving the advantages of using the root, which
may be accessed by 16-bit addresses. Use of the option is generally transparent for
Dynamic C users. More information on separate | & D implementation will be availablein
the Rabbit 2000 Designer’s Handbook, and is currently available in the Rabbit 3000
Designers Handbook.
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The MMIDR register shown in Table B-9 is used to enable and configure separate | & D
space support in addition to the /CS1 enable option used to improve the access time of
battery-backable SRAM.

NOTE: Bits[7:5] and [3:0] were always written with zero in the original Rabbit 2000 chip.

Table B-9. MMU Instruction/Data Register (MMIDR =010h)

MMU Instruction/Data Register (MMIDR) (Address = 0x10)
Bit(s) Value Description
7:6 00 These bits are ignored and always return zeros when read.
0 Enable A16 and A19 inversion independent of instruction/data.
> 1 Enable A16 and A19 inversion (controlled by bits 0-3) for data accesses only.
This enables the instruction/data split. Thisis separate | and D space.
0 Normal /CS1 operation.
4 Force /CS1 always active. Thiswill not cause any conflicts as long as the
1 memory using /CS1 does not also share an Output Enable or Write Enable with
another memory.
0 Normal operation.
° 1 For a DATASEG access, invert A19 before MBXCR (bank select) decision.
0 Normal operation.
? 1 For aDATASEG access: invert A16
0 Normal operation.
! 1 For root access, invert A19 before MBxCR (bank select) decision.
0 Normal operation.
° 1 For root access, invert A16

208

Rabbit 2000 Microprocessor




B.2.6 Write Inhibit (/WEOQ) After Reset

Thisfeature, available in revisions A—C, modified the reset state of the MBOCR register to
inhibit /WEQ. Inhibiting writes after reset prevents the processor from inadvertently writ-
ing to an unprogrammed flash memory that doesn’t have the software data protection
enabled. In aflash memory where the software data protection is enabled, an inadvertent
write will temporarily disable the flash memory if the memory is used to execute code.

This has not been a serious problem in the past for two reasons. First, programming sys-
tems using Dynamic C permanently enable software data protection, and second, most
manufacturers ship their memory devices with software data protection permanently
enabled.

Software data protection consists of athree-byte load sequence that is used to initiate pro-
gram operation during the system power-up or power-down, providing protection from
inadvertent write operations. Flash devices usually provide a chip-erase operation, which
allows the user to erase the entire memory array to the ‘1's state. Flash devices are nor-
mally erased prior to shipment. When the Rabbit processor comes out of reset, it begins
fetching instructions from address zero of the device connected to /CS0, /OEO, and /WEQ,
which in most cases is aflash memory. If the flash contains Oxff at address zero, the pro-
cessor will decode this as an RST 38. An RST 38 vectorsto an I SR area at address 0x70
and pushes the PC onto the stack, which by default is located at address 0x00 (flash mem-
ory). This can be aproblem if the flash is repeatedly written to in an endless |loop because
flash memories can only endure a finite number of writes, typically about 100,000.

B.2.7 Chip Selects Inactive During Internal I/O

In the original Rabbit 2000, it was found that whichever chip select was mapped to
MBOCR would become active during internal I/O operations. This behavior did not cause
any problems, but was corrected in revisions A—C.

B.2.8 External Interrupt Input Bug Fix

The external interrupt bug discovered in the original Rabbit 2000 required the externa
interrupt inputs to be tied together with aresistor as described in Technical Note TN301,
Rabbit 2000 Microprocessor I nterrupt Problem. This bug was subsequently fixed in revi-
sions A-C of the Rabbit 2000, and two separate external interrupt inputs are available on
these devices.

B.2.9 IOI/IOE Prefix Bug Fix

Certain instructions did not function correctly as described in Technical Note TN302,
Rabbit 2000 I nstruction Bug. The problem was corrected in revisions A—C of the Rabbit
2000.
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B.2.10 DDCB/FDCB Instruction Page and Wait State Bug Fixes

Four-byte instructions starting with DD-CB or FD-CB didn’t work when attempted with
walit states.

The fetch of the byte immediately following the instruction did not have the correct num-
ber of wait states inserted for the following instructions only when using wait states.
Rather than the programmed number of wait states, the fetch was short by one wait state.

DINZ (branch not taken only)
JR cc (branch not taken only)
JP cc (branch not taken only)
A similar thing happens for the block move instructions. In these cases, the read cycleis

short by one wait state.

LDDR
LDI R

For the multiply instruction, the fetch of the first byte after the MUL instruction had no

walit states, independent of the number programmed.

These problems were corrected in revisions A—C of the Rabbit 2000.
New Bug with LDIR/LDDR

A new LDIR/LDDR bug was discovered in September, 2002. The problem has to do with
wait states and the block move operations. With this problem, the first iteration of

LDI R/ LDDR uses the correct number of wait states for both the read and the write. How-
ever, all subsequent iterations use the number of waits programmed for the memory
located at the write address for both the read and write cycles. This becomes a problem
when moving ablock of datafrom aslow memory device requiring wait states to afast
memory device requiring no wait states. With respect to external 1/O operations, the LDI R
or LDDR performs reads with zero wait states independent of the waits programmed for the
[/Ofor al but thefirst iteration. Thefirst iteration is correct. This bug isautomatically cor-
rected by Dynamic C.

B.2.11 LDIR/LDDR Instruction/Data Split Bug Fix

The bug with LDI R/LDDR and separate | & D space discovered in the Rabbit 2000A had to
do with the way the memory control unit treated the move from and the move to addresses
of the block move operation. With the instruction/data split enabled, data access in the
ROOT and/or DATASEG regions would result in addresses A16 and/or A19 being
inverted, depending on how the MMIDR was configured. Thiswould allow the data space
to be moved up or down by 64K or 512 K.

With this problem, the first iteration of LDI R/LDDR resulted in the correct addressinver-
sion for data accesses in the ROOT and/or DATASEG regions. However, all subsequent
iterations took place in the code region (without any address inversion).

This problem was fixed in revisions B and C of the Rabbit 2000.
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B.2.12 Clock Spectrum Spreader Module

Thisisafeature introduced on the Rabbit 3000 and migrated to revisions B and C of the
Rabbit 2000. The clock spectrum spreader and early memory output enable are turned on
by default for the Rabbit 2000C in Dynamic C version 7.32 and higher. The spectrum
spreader is very powerful for reducing EMI because it will reduce all sources of EMI
above 100 MHz that are related to the clock by about 15 dB. Thisisavery large reduction
since it iscommon to struggle to reduce EMI by 5 dB in order to pass government tests.

15dB _| >
Strong Spreading
10 _|
A Normal Spreading
5 _]

| | | | | |
50 100 150 200 250 300 3%0
MHz

Figure B-2. Peak Spectral Amplitude Reduction from Spectrum Spreader

The spectrum spreader modul ates the clock so as to spread out the spectrum of the clock
and its harmonics. Since the government tests use a 120 kHz bandwidth to measure EMI,
spreading the energy of a given harmonic over awider bandwidth will decrease the
amount of EMI measured for a given harmonic. The spectrum spreader not only reduces
the EMI measured in government tests, but it will also often reduce the interference cre-
ated for radio and television reception.

The spectrum spreader has three settings under software control: off, normal spreading,
and strong spreading.

Two registers control the clock spectrum spreader. These registers must be loaded in a spe-
cific manner with proper time delays. GCMOR is only read by the spectrum spreader at the
moment when the spectrum spreader is enabled by storing 080h in GCM1R. If GCM1R is
cleared (when disabling the spectrum spreader), there is up to a500-clock delay before the
spectrum spreader is actually disabled. The proper procedureisto clear GCM 1R, wait for
500 clocks, set GCMOR, and then enable the spreader by storing 080h in GCM 1R.
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Table B-10. Spread Spectrum Enable/Disable Register

Global Clock Modulator 0 Register (GCMOR) (Address = 0x0A)

Bit(s) Value Description

0 Enable normal spectrum spreading.

1 Enable strong spectrum spreading.

6.0 These bits are reserved.

Table B-11. Spread Spectrum Mode Select

Global Clock Modulator 1 Register (GCM1R) (Address = 0x0B)

Bit(s) Value Description

0 Disable the spectrum spreader.

1 Enable the spectrum spreader.

6.0 These bits are reserved.

When the spectrum spreader is engaged, the frequency is modulated, and individual clock
cycles may be shortened or lengthened by an amount that depends on whether the clock
doubler is engaged and whether the spectrum spreader is set to the normal or strong set-
ting. The frequency modulation amplitude and the change in clock cycle length is greater
at lower voltages or higher temperatures since it is sensitive to process parameters. The
spectrum spreader also introduces a time offset in the system clock edge and an equal off-
set in edges generated relative to the system clock. A feedback system limits the worst-
case time error of any signal edge derived from the system clock to +35 nsfor the normal
setting and =70 nsfor the strong setting at 5.0 V. The maximum time offset isinversely
proportional to operating voltage. This small timing error will not generally affect opera-
tionsin the great majority of systems.

If the input oscillator frequency is4 MHz or less, the spectrum spreader modulation of fre-
quency will enter the audio range of 20 kHz or less, and may generate an audible whistle
in FM stations. For this reason it may be desirable to disable the spreader for |ow-speed
oscillators (whereit is probably unnecessary anyway). However, in practical casesthe
whistle may not be audible because of the very low level of the interference from a system
with alow oscillator frequency with the spectrum spreader engaged. Each halving of clock
frequency reduces the amplitude of the harmonics at a given frequency by 6 dB or more.

The effect of pure harmonic noise on an FM station is to either completely block out a sta-
tion near the harmonic frequency or to disturb the reception of that station. If the spectrum
spreader is engaged, the interference will be spread across the band, but will generally be
so low as to be undetectable, except perhaps for extremely weak stations. The effect of a
pure harmonic on TV reception isto create a herringbone pattern created by a harmonic
falling within the station’s band. If the spreader is engaged, the pattern will disappear
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unless the station is very weak, in which case the interference will be seen as noise distrib-
uted over the screen.

A more important changein timing is that the memory access time will be shortened. The
shortening with the clock doubler enabled and zero wait statesis a maximum of 6 nsin the
normal mode and 9 nsin the strong mode. Only one of the 2 clocksin amemory cycle will
be shortened.

—>| |<—T 6 — 0.4 * T minimum first or second clock
: Spectrum spreader normal (6 ms)

~<—]
J )) \'?shonening due to spectrum spread
|

adr

10 ns | | |
] + X _address
7Y o late | |
| | & output enablel |/~ output enable
T. > '« I
carly oe /X | dataout
output enable 5ns |
"l |‘_ setup
i1 2ns

Memory access time =2 *T -6 — Tdr
=2*T-6-10-2

If T =45 (22.11 MHz), Tacc 72 ns

Tacc = 58 ns for 25.8 MHz

Tacc = 50 ns for 29.49 MHz

setup

Output enable access early=12+T-6-5-0.04*T -2
=46 ns for 22.11 MHz
=40 ns for 25.8 MHz
= 34 ns for 29.49 MHz

Figure B-3. Clock Spectrum Spreader Example

If the clock doubler is not enabled, then the maximum shortening will be 9 nsin the nor-
mal mode and 18 nsin the strong mode. Figure B-3 assumes that the combined address
out and data setup inis 12 ns. The time from clock to output enableis assumed to be 5 ns.
The maximum asymmetry of the clock is assumed to be 52-48%, which shortens one
clock by 4% and lengthens the other by 4% if the clock is doubled.

Early output enable is enabled by default on the R2000C, but may be disabled. The clock
low timeis controlled by the clock doubler control register, and is assumed to be a mini-
mum of 14 nsin the above example. Also the maximum clock speed from the example
with the spreader enabled and 55 ns memory with 25 ns output enable is 25.8 MHz. At
29.49 MHz the memory access must be 50 ns, and the spectrum spreader must be turned
off, or await state must be added. Operation with a doubled clock and the spreader
enabled at 29.49 MHz isonly allowed for T <70°CandV > 4.75V since the instanta-
neous clock frequency bursts to 38.5 MHz when the spectrum spreader and clock asym-
metry together produce maximum shortening of aclock cycle.
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B.2.13 Early Memory Output-Enable Feature

The early 1/0 enable feature was added to the Rabbit 2000C revision to relax the tight tim-
ing requirements for memory access when using the clock spectrum spreader. The early
I/O option extends the output enable time for the /OEXx strobes and the write enable time
for the /IWEX strobes by a half clock cycle. The Memory Timing Control Register
(MTCR) enables the extended timing for the memory output enable and write enable
strobes.

Table B-12. Memory Timing Control Register

Memory Timing Control Register (MTCR) (Address = 0x19)
Bit(s) Value Description
74 XXXX These bits are reserved and should not be used.
3 0 Normal timing for /OE1B (rising edge to rising edge, one clock minimum).
1 Extended timing for /OE1B (one-half clock earlier than normal).
2 0 Normal timing for /OEOB (rising edge to rising edge, one clock minimum).
1 Extended timing for /OEOB (one-half clock earlier than normal).

Normal timing for /WE1B (rising edgeto falling edge, one and one-half clocks

1 0 .
minimum).
1 Extended timing for /WE1B (falling edge to falling edge, two clocks
minimum).
0 0 Normal timing for /WEOB (rising edgeto falling edge, one and one-half clocks
minimum).
1 Extended timing for /WEOB (falling edge to falling edge, two clocks

minimum).

Memory read and write timing are discussed further in Chapter 15, “AC Timing Specifica-
tions.”
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NOTICE TO USERS

RABBIT SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTSIN LIFE-SUPPORT DEVICES OR SYSTEMS UNLESS A
SPECIFIC WRITTEN AGREEMENT REGARDING SUCH INTENDED USE IS
ENTERED INTO BETWEEN THE CUSTOMER AND RABBIT SEMICONDUCTOR
PRIOR TO USE. Life-support devices or systems are devices or systems intended for sur-
gical implantation into the body or to sustain life, and whose failure to perform, when
properly used in accordance with instructions for use provided in the labeling and user’s
manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system
of any size. In order to prevent danger to life or property, it is the responsibility of the sys-
tem designer to incorporate redundant protective mechanisms appropriate to the risk
involved.
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