
An Introduction to TCP/IP
For Embedded System Designers

019-0074 • 020701-G

An Introduction to TCP/IP

019-0074 • 020701–G • Printed in U.S.A.

©2001 Z-World Inc. • All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Dynamic C is a registered trademark of Z-World Inc.

Windows® is a registered trademark of Microsoft Corporation

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800
USA

Telephone: 530.757.3737
Fax: 530.757.3792 or 530.753.5141

www.zworld.com
ii

http://www.zworld.com

Table of Contents

1. Introduction...1

2. Ethernet Basics ...3
2.1 Ethernet Address ...3

2.2 Physical Connections ..3
2.2.1 Cables...4

2.3 Frames ...4
2.3.1 Collisions ..5

3. Networks ...7
3.1 LAN...7

3.1.1 Repeaters and Bridges ...7

3.2 WAN..8
3.2.1 Packet Switches ...8
3.2.2 Forwarding a Packet ..8

3.3 VPN...9

3.4 Network Devices ...9
3.4.1 Routers ...9
3.4.2 Firewalls...9
3.4.3 Gateways..10

3.5 Network Architecture..10
3.5.1 Client/Server Networks..10

3.5.1.1 Port Numbers ..11

4. Network Protocol Layers ..13
4.1 Layering Models ...13

4.2 TCP/IP Protocol Stack ..14

5. TCP/IP Protocols ..15
5.1 IP ...16

5.1.1 IP Address..16
5.1.2 IP Address Classes...16
5.1.3 Netmasks..16
5.1.4 Subnet Address ..17
5.1.5 Directed Broadcast Address...17
5.1.6 Limited Broadcast Address..17

5.2 IP Routing ...17

5.3 ARP ...18

5.4 The Transport Layer ..18
5.4.1 UDP ...18
5.4.2 TCP ..18

5.4.2.1 TCP Connection/Socket ...19
5.4.2.2 TCP Header ..19

5.4.3 ICMP..21

5.5 The Application Layer ..21
5.5.1 DNS ...21

5.5.1.1 DCRTCP.LIB Implementation of DNS ...22
An Introduction to TCP/IP iii

6. Dynamic C TCP/IP Implementation...23
6.1 TCP/IP Configuration Macros.. 23

6.1.1 IP Addresses Set Manually ... 23
6.1.2 IP Addresses Set Dynamically .. 24
6.1.3 Default Buffer Size.. 24
6.1.4 Delay a Connection ... 24
6.1.5 Runtime Configuration.. 25

6.2 Skeleton Program.. 25

6.3 TCP Socket ... 26
6.3.1 Passive Open ... 26

6.3.1.1 Example of Passive Open .. 27
6.3.2 Active Open... 28
6.3.3 TCP Socket Functions... 29

6.3.3.1 Control Functions .. 29
6.3.3.2 Status Functions ... 30
6.3.3.3 I/O Functions ... 31

6.4 UDP Interface ... 31
6.4.1 Opening and Closing... 32
6.4.2 Writing... 32
6.4.3 Reading.. 32
6.4.4 Checksums .. 32

6.5 Program Design .. 33
6.5.1 State-Based Program Design... 33
6.5.2 Blocking vs. Non-Blocking... 33
6.5.3 Blocking Macros ... 34

6.6 Multitasking and TCP/IP .. 34

7. References...35

Notice to Users ...37
iv An Introduction to TCP/IP

1. Introduction

This manual is intended for embedded systems engineers and support professionals who are not
familiar with basic networking concepts. An overview of an Ethernet network and the TCP/IP
suite of protocols used to communicate across the network will be given.

The implementation details that are discussed in this manual pertain to versions of Dynamic C
prior to 7.05. Improvements and additions to the TCP/IP suite of protocols are fully documented
in the Dynamic C TCP/IP User’s Manual.
An Introduction to TCP/IP 1

2 An Introduction to TCP/IP

2. Ethernet Basics

TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols independent of the
physical medium used to transmit data, but most data transmission for Internet communication
begins and ends with Ethernet frames.

The Ethernet can use either a bus or star topology. A bus topology attaches all devices in sequence
on a single cable. In a star topology all devices are wired directly to a central hub. 10Base-T uses a
combination called a star-shaped bus topology because while the attached devices can share all
data coming in on the cable, the actual wiring is in a star shape.

The access method used by the Ethernet is called Carrier Sense Multiple Access with Collision
Detect (CSMA/CD). This is a contention protocol, meaning it is a set of rules to follow when there
is competition for shared resources.

2.1 Ethernet Address
All Ethernet interfaces have a unique 48-bit address that is supplied by the manufacturer. It is
called the Ethernet address (also known as the MAC address, for Media Access Control).
Ethernet-enabled Z-World boards store this value in Flash Memory (EEPROM) that is
programmed at the factory. If you need unique Ethernet addresses for some product you are
making, you can obtain them from the IEEE Registration Authority.

To read the MAC address of a TCP/IP Development Board, run the utility program
display_MAC.c. It is located on the Technical Support Sample Program Web page:
http://www.rabbitsemiconductor.com/support_center/rab20_support.html. It is also
included with Dynamic C, version 7.04 and above.

2.2 Physical Connections
A Realtek RTL8019 10Base-T interface chip provides a 10 Mbps Ethernet connection. This chip is
used on many Ethernet-enabled Z-World boards. The corresponding port can be connected directly
to an Ethernet network.

By using hubs and routers, a network can include a large number of computers. A network might
include all the computers in a particular building. A local network can be connected to the Internet
by means of a gateway. The gateway is a computer that is connected both to the local network and
to the Internet. Data that must be sent out over the Internet are sent to the local network interface
of the gateway, and then the gateway sends them on to the Internet for routing to some other com-
puter in the world. Data coming in from the Internet are directed to the gateway, which then sends
them to the correct recipient on the local network.
An Introduction to TCP/IP 3

http://www.rabbitsemiconductor.com/support_center/rab20_support.html
http://standards.ieee.org/regauth/

2.2.1 Cables
Ethernet cables are similar to U.S. telephone plug cables, except they have eight connectors. For
our purposes, there are two types of cables—crossover and straight-through. In most instances, the
straight-through cables are used. It is necessary to use a crossover cable when two computers are
connected directly without a hub (for example, if you want to connect your PC’s Ethernet directly
to the Rabbit Semiconductor TCP/IP Development Board.) Some hubs have one input that can
accept either a straight-through or crossover cable depending on the position of a switch. In this
case make sure that the switch position and cable type agree.

Figure 1. Ethernet Network

2.3 Frames
Bits flowing across the Ethernet are grouped into structures called frames. A frame must be
between 46 and 1500 bytes in size. An Ethernet frame has four parts:

1. A Preamble of 8 bytes that helps synchronize the circuitry, thus allowing small bit rate differ-
ences between sender and receiver.

2. A Header of 14 bytes that contains a 6 byte destination address, 6 byte source address and a 2
byte type field.

3. A Data area of variable length that, along with the header, is passed to the IP layer (aka. the
Network layer).

4. A Trailer of 4 bytes that contains a CRC to guard against corrupted frames.

If the destination address is all 1 bits, it defines a broadcast frame and all systems on the local net-
work process the frame. There are also multicast frames. A subset of systems can form a “multi-
cast” group that has an address that does not match any other system on the network. All systems
in a particular subset process a packet with a destination address that matches their subset. A sys-
tem can belong to any number of subsets.

A system may put its interface(s) into promiscuous mode and process all frames sent across its
Ethernet. This is known as "sniffing the ether." It is used for network debugging and spying.

HUB

Local Network Computers

Gateway
To Internet

Ethernet
cables
4 An Introduction to TCP/IP

2.3.1 Collisions
In a star-shaped bus topology, all systems have access to the network at any time. Before sending
data, a system must determine if the network is free or if it is already sending a frame. If a frame is
already being sent, a system will wait. Two systems can “listen” on the network and “hear” silence
and then proceed to send data at the same time. This is called a collision. Ethernet hardware has
collision detection sensors to take care of this problem. This is the Collision Detect (CD) part of
CSMA/CD. The colliding data is ignored, and the systems involved will wait a random amount of
time before resending their data.
An Introduction to TCP/IP 5

6 An Introduction to TCP/IP

3. Networks

A network is a system of hardware and software, put together for the purpose of communication
and resource sharing. A network includes transmission hardware, devices to interconnect trans-
mission media and to control transmissions, and software to decode and format data, as well as to
detect and correct problems.

There are several types of networks in use today. This chapter will focus on three of them:

• LAN - Local Area Network

• WAN - Wide Area Network

• VPN - Virtual Private Network

3.1 LAN
The most widely deployed type of network, LANs were designed as an alternative to the more
expensive point-to-point connection. A LAN has high throughput for relatively low cost. LANs
often rely on shared media, usually a cable, for connecting many computers. This reduces cost.
The computers take turns using the cable to send data.

3.1.1 Repeaters and Bridges
LANs typically connect computers located in close physical proximity, i.e., all the computers in a
building. Repeaters are used to join network segments when the distance spanned causes electrical
signals to weaken. Repeaters are basically amplifiers that work at the bit level; they do not actively
modify data that is amplified and sent to the next segment.

Like repeaters, bridges are used to connect two LANs together. Unlike repeaters, bridges work at
the frame level. This is useful, allowing bridges to detect and discard corrupted frames. They can
also perform frame filtering, only forwarding a frame when necessary. Both of these capabilities
decrease network congestion.

Bridged LANs can span arbitrary distances when using a satellite channel for the bridge. The
resulting network is still considered a LAN and not a WAN.
An Introduction to TCP/IP 7

3.2 WAN
To be considered a WAN, a network must be able to connect an arbitrary number of sites across an
arbitrary distance, with an arbitrary number of computers at each site. In addition, it must have
reasonable performance (no long delays) and allow all of the computers connected to it to commu-
nicate simultaneously. This is accomplished with packet switches.

Figure 2. WAN with 4 switches.

3.2.1 Packet Switches
Packet switches are small computers with CPUs, memory and I/O devices. They move complete
packets, using a technique called Store and Forward. An incoming packet is stored in a memory
buffer and the CPU is interrupted. The processor examines the packet and forwards it to the appro-
priate place. This strategy allows the switch to accept multiple packets simultaneously.

As the figure above illustrates, WANs currently do not need to be symmetric.

3.2.2 Forwarding a Packet
A data structure contains the information that tells the switch where to send the packet next. This
is called a routing table. The destination address in the packet header determines the routing table
entry that is used to forward the packet. It could be forwarded to a computer attached to the switch
that is examining the packet or it could be to another switch in the WAN.

������
������	�

������
������	��

������
������	��

���	�����

�������		�

�����	�

������
������	��
8 An Introduction to TCP/IP

3.3 VPN
VPNs are built on top of a publicly-accessible infrastructure, such as the Internet or the public
telephone network. They use some form of encryption and have strong user authentication. Essen-
tially a VPN is a form of WAN; the difference is their ability to use public networks rather than
private leased lines. A VPN supports the same intranet services as a traditional WAN, but also sup-
ports remote access service. This is good for telecommuting, as leased lines don’t usually extend
to private homes and travel destinations.

A remote VPN user can connect via an Internet Service Provider (ISP) in the usual way. This elim-
inates long-distance charges. The user can then initiate a tunnel request to the destination server.
The server authenticates the user and creates the other end of the tunnel. VPN software encrypts
the data, packages it in an IP packet (for compatibility with the Internet) and sends it through the
tunnel, where it is decrypted at the other end.

There are several tunneling protocols available: IP security (IPsec), Point-to-Point Tunneling Pro-
tocol (PPTP) and Layer 2 Tunneling Protocol (L2TP).

3.4 Network Devices
Some network devices (repeaters, bridges and switches) were discussed in the previous sections.
These are all dedicated hardware devices. Network devices can also be non-dedicated systems
running network software.

3.4.1 Routers
A router is a hardware device that connects two or more networks. Routers are the primary back-
bone device of the Internet, connecting different network technologies into a seamless whole.
Each router is assigned two or more IP addresses because each IP address contains a prefix that
specifies a physical network.

Before a packet is passed to the routing software, it is examined. If it is corrupted, it is discarded.
If it is not corrupted, a routing table is consulted to determine where to send it next. By default,
routers do not propagate broadcast packets (see “Directed Broadcast Address” on page 17). A
router can be configured to pass certain types of broadcasts.

3.4.2 Firewalls
A firewall is a computer, router, or some other communications device that controls data flow
between networks. Generally, a firewall is a first-line defense against attacks from the outside
world. A firewall can be hardware-based or software-based. A hardware-based firewall is a special
router with additional filter and management capabilities. A software-based firewall runs on top of
the operating system and turns a PC into a firewall.

Conceptually, firewalls can be categorized as Network layer (aka Data Link layer) or Application
layer. Network layer firewalls tend to be very fast. They control traffic based on the source and
destination addresses and port numbers, using this information to decide whether to pass the data
on or discard it.

Application layer firewalls do not allow traffic to flow directly between networks. They are typi-
cally hosts running proxy servers. Proxy servers can implement protocol specific security because
An Introduction to TCP/IP 9

they understand the application protocol being used. For instance, an application layer firewall can
be configured to allow only e-mail into and out of the local network it protects.

3.4.3 Gateways
A gateway performs routing functions. The term default gateway is used to identify the router that
connects a LAN to an internet. A gateway can do more than a router; it also performs protocol
conversions from one network to another.

3.5 Network Architecture
There are two network architectures widely used today: peer-to-peer and client/server. In peer-to-
peer networks each workstation has the same capabilities and responsibilities. These networks are
usually less expensive and simpler to design than client/server networks, but they do not offer the
same performance with heavy traffic.

3.5.1 Client/Server Networks
The client/server paradigm requires some computers to be dedicated to serving other computers. A
server application waits for a client application to initiate contact.

Table 1. Summary of Differences between Client and Server Software

Client Software Server Software

An arbitrary application program that becomes a
client when a remote service is desired. It also
performs other local computations.

A special-purpose, privileged program dedicated to
providing one service. It can handle multiple remote
clients at the same time.

Actively initiates contact. Passively waits for contact.

Invoked by a user and executes for one session.
Invoked when the system boots and executes
through many sessions.

Capable of accessing multiple services as needed,
but actively contacts only one remote server at a
time.

Accepts contact from an arbitrary number of clients,
but offers a single service or a fixed set of services.

Does not require special hardware or a sophisticated
operating system.

Can require powerful hardware and a sophisticated
operating system, depending on how many clients
are being served.
10 An Introduction to TCP/IP

3.5.1.1 Port Numbers
Port numbers are the mechanism for identifying particular client and server applications. Servers
select a port to wait for a connection. Most services have well-known port numbers. For example,
HTTP uses port 80. When a web browser (the client) requests a web page it specifies port 80 when
contacting the server. Clients usually have ephemeral port numbers since they exist only as long as
the session lasts.

Some of the common well-known TCP port numbers are listed in the table below.

Port
Number

Listening Application

7 Echo request

20/21 File Transfer Protocol (FTP)

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)

53 Domain Name Server

80 HTTP Server
An Introduction to TCP/IP 11

12 An Introduction to TCP/IP

4. Network Protocol Layers

Computers on a network communicate in agreed upon ways called protocols. The complexity of
networking protocol software calls for the problem to be divided into smaller pieces. A layering
model aids this division and provides the conceptual basis for understanding how software proto-
cols together with hardware devices provide a powerful communication system.

4.1 Layering Models
In the early days of networking, before the rise of the ubiquitous Internet, the International Organi-
zation for Standardization (ISO) developed a layering model whose terminology persists today.

The 7-layer model has been revised to the 5-layer TCP/IP reference model to meet the current
needs of protocol designers.

Table 2. ISO 7-Layer Reference Model

Name of Layer Purpose of Layer

Layer 7 Application Specifies how a particular application uses a network.

Layer 6 Presentation Specifies how to represent data.

Layer 5 Session
Specifies how to establish communication with a remote
system.

Layer 4 Transport Specifies how to reliably handle data transfer.

Layer 3 Network
Specifies addressing assignments and how packets are
forwarded.

Layer 2 Data Link
Specifies the organization of data into frames and how to
send frames over a network.

Layer 1 Physical Specifies the basic network hardware.

Table 3. TCP/IP 5-Layer Reference Model

Name of Layer Purpose of Layer

Layer 5 Application Specifies how a particular application uses a network.

Layer 4 Transport Specifies how to ensure reliable transport of data.

Layer 3 Internet Specifies packet format and routing.

Layer 2 Network Specifies frame organization and transmittal.

Layer 1 Physical Specifies the basic network hardware.
An Introduction to TCP/IP 13

4.2 TCP/IP Protocol Stack
TCP/IP is the protocol suite upon which all Internet communication is based. Different vendors
have developed other networking protocols, but even most network operating systems with their
own protocols, such as Netware, support TCP/IP. It has become the de facto standard.

Protocols are sometimes referred to as protocol stacks or protocol suites. A protocol stack is an
appropriate term because it indicates the layered approach used to design the networking software

Figure 3. Flow of data between two computers using TCP/IP stacks.

Each host or router in the internet must run a protocol stack. The details of the underlying physical
connections are hidden by the software. The sending software at each layer communicates with the
corresponding layer at the receiving side through information stored in headers. Each layer adds
its header to the front of the message from the next higher layer. The header is removed by the cor-
responding layer on the receiving side.

�������	 �������	

����������� �����������

��������� ���������

�	����� �	�����

����� ��� ����� ���

!������
���	�����

"�#���������	�����

$�	�������%	����	

$�	�������%	����	

$�	�������%	����	

$�	�������%	����	

�	��	� &	�	�'	�
14 An Introduction to TCP/IP

5. TCP/IP Protocols

This chapter discusses the protocols available in the TCP/IP protocol suite. The following figure
shows how they correspond to the 5-layer TCP/IP Reference Model. This is not a perfect one-to-
one correspondence; for instance, Internet Protocol (IP) uses the Address Resolution Protocol
(ARP), but is shown here at the same layer in the stack.

Figure 4. TCP/IP Protocol Flow

��������

��	
	

��	 �	
��	

���	

���	

��	

���

���	

����	
���	

	
��

���������

�������

���������

��� �!�����
An Introduction to TCP/IP 15

5.1 IP
IP provides communication between hosts on different kinds of networks (i.e., different data-link
implementations such as Ethenet and Token Ring). It is a connectionless, unreliable packet deliv-
ery service. Connectionless means that there is no handshaking, each packet is independent of any
other packet. It is unreliable because there is no guarantee that a packet gets delivered; higher-
level protocols must deal with that.

5.1.1 IP Address
IP defines an addressing scheme that is independent of the underlying physical address (e.g, 48-bit
MAC address). IP specifies a unique 32-bit number for each host on a network. This number is
known as the Internet Protocol Address, the IP Address or the Internet Address. These terms are
interchangeable. Each packet sent across the internet contains the IP address of the source of the
packet and the IP address of its destination.

For routing efficiency, the IP address is considered in two parts: the prefix which identifies the
physical network, and the suffix which identifies a computer on the network. A unique prefix is
needed for each network in an internet. For the global Internet, network numbers are obtained
from Internet Service Providers (ISPs). ISPs coordinate with a central organization called the
Internet Assigned Number Authority (IANA).

5.1.2 IP Address Classes
The first four bits of an IP address determine the class of the network. The class specifies how
many of the remaining bits belong to the prefix (aka Network ID) and to the suffix (aka Host ID).
The first three classes, A, B and C, are the primary network classes.

When interacting with mere humans, software uses dotted decimal notation; each 8 bits is treated
as an unsigned binary integer separated by periods. IP reserves host address 0 to denote a network.
140.211.0.0 denotes the network that was assigned the class B prefix 140.211.

5.1.3 Netmasks
Netmasks are used to identify which part of the address is the Network ID and which part is the
Host ID. This is done by a logical bitwise-AND of the IP address and the netmask. For class A
networks the netmask is always 255.0.0.0; for class B networks it is 255.255.0.0 and for class C
networks the netmask is 255.255.255.0.

Class First 4 Bits
Number Of
Prefix Bits

Max # Of
Networks

Number Of
Suffix Bits

Max # Of Hosts Per
Network

A 0xxx 7 128 24 16,777,216

B 10xx 14 16,384 16 65,536

C 110x 21 2,097,152 8 256

D 1110 Multicast

E 1111 Reserved for future use.
16 An Introduction to TCP/IP

5.1.4 Subnet Address
All hosts are required to support subnet addressing. While the IP address classes are the conven-
tion, IP addresses are typically subnetted to smaller address sets that do not match the class sys-
tem. The suffix bits are divided into a subnet ID and a host ID. This makes sense for class A and B
networks, since no one attaches as many hosts to these networks as is allowed. Whether to subnet
and how many bits to use for the subnet ID is determined by the local network administrator of
each network.

If subnetting is used, then the netmask will have to reflect this fact. On a class B network with sub-
netting, the netmask would not be 255.255.0.0. The bits of the Host ID that were used for the sub-
net would need to be set in the netmask.

5.1.5 Directed Broadcast Address
IP defines a directed broadcast address for each physical network as all ones in the host ID part of
the address. The network ID and the subnet ID must be valid network and subnet values. When a
packet is sent to a network’s broadcast address, a single copy travels to the network, and then the
packet is sent to every host on that network or subnetwork.

5.1.6 Limited Broadcast Address
If the IP address is all ones (255.255.255.255), this is a limited broadcast address; the packet is
addressed to all hosts on the current (sub)network. A router will not forward this type of broadcast
to other (sub)networks.

5.2 IP Routing
Each IP datagram travels from its source to its destination by means of routers. All hosts and rout-
ers on an internet contain IP protocol software and use a routing table to determine where to send a
packet next. The destination IP address in the IP header contains the ultimate destination of the IP
datagram, but it might go through several other IP addresses (routers) before reaching that destina-
tion.

Routing table entries are created when TCP/IP initializes. The entries can be updated manually by
a network administrator or automatically by employing a routing protocol such as Routing Infor-
mation Protocol (RIP). Routing table entries provide needed information to each local host regard-
ing how to communicate with remote networks and hosts.

When IP receives a packet from a higher-level protocol, like TCP or UDP, the routing table is
searched for the route that is the closest match to the destination IP address. The most specific to
the least specific route is in the following order:

• A route that matches the destination IP address (host route).

• A route that matches the network ID of the destination IP address (network route).

• The default route.

If a matching route is not found, IP discards the datagram.
An Introduction to TCP/IP 17

IP provides several other services:

• Fragmentation: IP packets may be divided into smaller packets. This permits a large
packet to travel across a network which only accepts smaller packets. IP fragments and
reassembles packets transparent to the higher layers.

• Timeouts: Each IP packet has a Time To Live (TTL) field, that is decremented every time
a packet moves through a router. If TTL reaches zero, the packet is discarded.

• Options: IP allows a packet's sender to set requirements on the path the packet takes
through the network (source route); the route taken by a packet may be traced (record
route) and packets may be labeled with security features.

5.3 ARP
The Address Resolution Protocol is used to translate virtual addresses to physical ones. The net-
work hardware does not understand the software-maintained IP addresses. IP uses ARP to trans-
late the 32-bit IP address to a physical address that matches the addressing scheme of the
underlying hardware (for Ethernet, the 48-bit MAC address).

There are three general addressing strategies:

1. Table lookup

2. Translation performed by a mathematical function

3. Message exchange

TCP/IP can use any of the three. ARP employs the third strategy, message exchange. ARP defines
a request and a response. A request message is placed in a hardware frame (e.g., an Ethernet
frame), and broadcast to all computers on the network. Only the computer whose IP address
matches the request sends a response.

5.4 The Transport Layer
There are two primary transport layer protocols: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). They provide end-to-end communication services for applications.

5.4.1 UDP
This is a minimal service over IP, adding only optional checksumming of data and multiplexing by
port number. UDP is often used by applications that need multicast or broadcast delivery, services
not offered by TCP. Like IP, UDP is connectionless and works with datagrams.

5.4.2 TCP
TCP is a connection-oriented transport service; it provides end-to-end reliability, resequencing,
and flow control. TCP enables two hosts to establish a connection and exchange streams of data,
which are treated in bytes. The delivery of data in the proper order is guaranteed.

TCP can detect errors or lost data and can trigger retransmission until the data is received, com-
plete and without errors.
18 An Introduction to TCP/IP

5.4.2.1 TCP Connection/Socket
A TCP connection is done with a 3-way handshake between a client and a server. The following is
a simplified explanation of this process.

• The client asks for a connection by sending a TCP segment with the SYN control bit set.

• The server responds with its own SYN segment that includes identifying information that
was sent by the client in the initial SYN segment.

• The client acknowledges the server’s SYN segment.

The connection is then established and is uniquely identified by a 4-tuple called a socket or socket
pair:

(destination IP address, destination port number)
(source IP address, source port number)

During the connection setup phase, these values are entered in a table and saved for the duration of
the connection.

5.4.2.2 TCP Header
Every TCP segment has a header. The header comprises all necessary information for reliable,
complete delivery of data. Among other things, such as IP addresses, the header contains the fol-
lowing fields:

Sequence Number - This 32-bit number contains either the sequence number of the first byte
of data in this particular segment or the Initial Sequence Number (ISN) that identifies the first
byte of data that will be sent for this particular connection.

The ISN is sent during the connection setup phase by setting the SYN control bit. An ISN is
chosen by both client and server. The first byte of data sent by either side will be identified by
the sequence number ISN + 1 because the SYN control bit consumes a sequence number. The
following figure illustrates the three-way handshake.
An Introduction to TCP/IP 19

Figure 5. Synchronizing Sequence Numbers for TCP Connection

The sequence number is used to ensure the data is reassembled in the proper order before
being passed to an application protocol.

Acknowledgement Number - This 32-bit number is the other host’s sequence number + 1 of
the last successfully received byte of data. It is the sequence number of the next expected byte
of data. This field is only valid when the ACK control bit is set. Since sending an ACK costs
nothing, (because it and the Acknowledgement Number field are part of the header) the ACK
control bit is always set after a connection has been established.

The Acknowledgement Number ensures that the TCP segment arrived at its destination.

Control Bits - This 6-bit field comprises the following 1-bit flags (left to right):

• URG - Makes the Urgent Pointer field significant.
• ACK - Makes the Acknowledgement Number field significant.
• PSH - The Push Function causes TCP to promptly deliver data.
• RST - Reset the connection.
• SYN - Synchronize sequence numbers.
• FIN - No more data from sender, but can still receive data.

Window Size - This 16-bit number states how much data the receiving end of the TCP con-
nection will allow. The sending end of the TCP connection must stop and wait for an acknowl-
edgement after it has sent the amount of data allowed.

�"����#$���
��������������
��%�&����'%(

�"�)��'���#$���
��������������
��%�&����'%�*+

��'���#$���
��������������,�-�%�*+&����'%�*+

������
.� ����/

������
.���0��/
20 An Introduction to TCP/IP

Checksum - This 16-bit number is the one’s complement of the one’s complement sum of all
bytes in the TCP header, any data that is in the segment and part of the IP packet. A checksum
can only detect some errors, not all, and cannot correct any.

5.4.3 ICMP
Internet Control Message Protocol is a set of messages that communicate errors and other condi-
tions that require attention. ICMP messages, delivered in IP datagrams, are usually acted on by
either IP, TCP or UDP. Some ICMP messages are returned to application protocols.

A common use of ICMP is “pinging” a host. The Ping command (Packet INternet Groper) is a
utility that determines whether a specific IP address is accessible. It sends an ICMP echo request
and waits for a reply. Ping can be used to transmit a series of packets to measure average round-
trip times and packet loss percentages.

5.5 The Application Layer
There are many applications available in the TCP/IP suite of protocols. Some of the most useful
ones are for sending mail (SMTP), transferring files (FTP), and displaying web pages (HTTP).
These applications are discussed in detail in the TCP/IP User’s Manual.

Another important application layer protocol is the Domain Name System (DNS). Domain names
are significant because they guide users to where they want to go on the Internet.

5.5.1 DNS
The Domain Name System is a distributed database of domain name and IP address bindings. A
domain name is simply an alphanumeric character string separated into segments by periods. It
represents a specific and unique place in the “domain name space.” DNS makes it possible for us
to use identifiers such as zworld.com to refer to an IP address on the Internet. Name servers con-
tain information on some segment of the DNS and make that information available to clients who
are called resolvers.
An Introduction to TCP/IP 21

5.5.1.1 DCRTCP.LIB Implementation of DNS
The resolve() function in DCRTCP.LIB immediately converts a dotted decimal IP address
to its corresponding binary IP address and returns this value.

If resolve() is passed a domain name, a series of queries take place between the computer that
called resolve() and computers running name server software. For example, to resolve the
domain name www.rabbitsemiconductor.com, the following code (available in SAM-
PLES\TCP\DNS.C) can be used.

Your local name server is specified by the configuration macro MY_NAMESERVER. Chances are
that your local name server does not have the requested information, so it queries the root server.
The root server will not know the IP address either, but it will know where to find the name server
that contains authoritative information for the .com zone. This information is returned to your
local name server, which then sends a query to the name server for the .com zone. Again, this
name server does not know the requested IP address, but does know the local name server that
handles rabbitsemiconductor.com. This information is sent back to your local name server, who
sends a final query to the local name server of rabbitsemiconductor.com. This local name server
returns the requested IP address of www.rabbitsemiconductor.com to your local name server, who
then passes it to your computer.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

#memmap xmem
#use dcrtcp.lib

main() {
longword ip;
char buffer[20];

sock_init();

ip=resolve("www.rabbitsemiconductor.com");
if(ip==0)

printf("couldn’t find www.rabbitsemiconductor.com\n");
else

printf("%s is www.rabbitsemiconductors address.\n”,
inet_ntoa(buffer,ip));

}

22 An Introduction to TCP/IP

6. Dynamic C TCP/IP
Implementation

The Dynamic C TCP/IP protocol suite is contained in a number of Dynamic C libraries. The main
library file is DCRTCP.LIB. IP version 4 is supported, not version 6. This chapter will describe
the configuration macros and the functions used to initialize and drive TCP/IP.

The implementation details that are discussed here pertain to versions of Dynamic C prior to 7.05.
Improvements and additions to the TCP/IP suite of protocols are fully documented in the
Dynamic C TCP/IP User’s Manual.

6.1 TCP/IP Configuration Macros
TCP/IP can be configured by defining configuration macros at compile time, by using the
tcp_config() function (and other functions) at runtime or by using the Dynamic Host Config-
uration Protocol (DHCP). Some ISPs require that the user provide them with a MAC address from
the controller. Run the utility program discussed in Section 2.1 to display the MAC address.

6.1.1 IP Addresses Set Manually
Four pieces of information are needed by any host on a network:

1. The IP address of the host (e.g., the TCP/IP Development Board).

2. The part of the IP address that distinguishes machines on the host’s network from machines on
other networks (the netmask).

3. The IP address of the router that connects the host’s network to the rest of the world (the default
gateway).

4. The IP address of the local DNS server for the host’s network. This is only necessary if DNS
backups are needed.

MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively corre-
spond to these four critical addresses.
An Introduction to TCP/IP 23

6.1.2 IP Addresses Set Dynamically
The macro USE_DHCP enables the Dynamic Host Configuration Protocol (DHCP). If this option
is enabled, a DHCP client contacts a DHCP server for the values of MY_IP_ADDRESS,
MY_NETMASK, MY_GATEWAY and MY_NAMESERVER.

DHCP servers are usually centrally located on a local network and operated by the network
administrator.

6.1.3 Default Buffer Size
There are two macros used to define the size of the buffer that is used for UDP datagram reads and
TCP packet reads and writes: tcp_MaxBufSize and SOCK_BUF_SIZE.

tcp_MaxBufSize is deprecated in Dynamic C version 6.57 and higher and is being kept for
backwards compatibility. It has been replaced by SOCK_BUF_SIZE.

If SOCK_BUF_SIZE is 4096 bytes, the UDP buffer is 4096 bytes, the TCP read buffer is 2048
bytes and the TCP write buffer is 2048 bytes.

In Dynamic C versions 6.56 and earlier, tcp_MaxBufSize determines the size of the input and
output buffers for TCP/IP sockets. The sizeof(tcp_Socket) will be about 200 bytes more
than double tcp_MaxBufSize. The optimum value for local Ethernet connections is greater
than the Maximum Segment Size (MSS). The MSS is 1460 bytes. You may want to lower
tcp_MaxBufSize, which defaults to 2048 bytes, to reduce RAM usage. It can be reduced to as
little as 600 bytes.

tcp_MaxBufSize will work slightly differently in Dynamic C versions 6.57 and higher. In
these later versions the buffer for the UDP socket will be tcp_MaxBufSize * 2, which is
twice as large as before.

6.1.4 Delay a Connection
Sometimes it is appropriate to accept a connection request when the resources to do so are not
available. This happens with web servers when web pages have several graphic images, each
requiring a separate socket.

The macro USE_RESERVEPORTS is defined by default. It allows the use of the function
tcp_reserveport(). When a connection to the port specified in tcp_reserveport() is
attempted, the 3-way handshaking is done even if there is not yet a socket available. This is done
by setting the window parameter in the TCP header to zero, meaning, “I can take 0 bytes of data at
this time.” The other side of the connection will wait until the value in the window parameter indi-
cates that data can be sent.

When using tcp_reserveport(), the 2MSL (for Maximum Segment Lifetime) waiting
period for closing a socket is avoided.

Using the companion function, tcp_clearreserve(), causes the connection to the port to be
done in the conventional way.
24 An Introduction to TCP/IP

6.1.5 Runtime Configuration
Functions are provided to change configuration values at runtime. The most general one is
tcp_config(). It takes two strings. The first string is the setting to be changed and the second
string is the value to change it to. The configuration macros MY_IP_ADDRESS, MY_NETMASK,
MY_GATEWAY, and MY_NAMESERVER can all be overridden by this function.

tcp_config("MY_IP_ADDRESS","10.10.6.101");

Some of the tcp_config() functionality is duplicated by other Dynamic C TCP/IP functions.
tcp_config() can override the macro MY_IP_ADDRESS, and so can the sethostid func-
tion.

6.2 Skeleton Program
The following program is a general outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default IP configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use” line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#memmap xmem
#use dcrtcp.lib

main() {
sock_init();
for (;;) {

tcp_tick(NULL);
}

}

To run this program, start Dynamic C and open the SAMPLES\TCPIP\PINGME.C file. Edit the
MY_IP_ADDRESS, MY_NETMASK, and MY_GATEWAY macros to reflect the appropriate values
for your device. Run the program and try to run ping 10.10.6.101 from a command line on
a computer on the same physical network, replacing 10.10.6.101 with your value for
MY_IP_ADDRESS.

The main() function first initializes the DCRTCP.LIB TCP/IP stack with a call to
sock_init(). This call initializes internal data structures and enables the Ethernet chip, which
will take a couple of seconds with the RealTek chip. At this point, DCRTCP.LIB is ready to han-
dle incoming packets.

DCRTCP.LIB processes incoming packets only when tcp_tick() is called. Internally, the
functions tcp_open(), udp_open(), sock_read(), sock_write(), sock_close(),
and sock_abort() all call tcp_tick(). It is a good practice to make sure that
tcp_tick() is called periodically in your program to insure that the system has had a chance to
process packets.

When you ping your device, the Ethernet chip temporarily stores the packet, waiting for
DCRTCP.LIB to process it. DCRTCP.LIB removes the packet the next time tcp_tick() gets
called, and responds appropriately.
An Introduction to TCP/IP 25

A rule of thumb is to call tcp_tick() around 10 times per second, although slower or faster
call rates should also work. The Ethernet interface chip has a large buffer memory, and TCP/IP is
adaptive to the data rates that both end of the connection can handle; thus the system will generally
keep working over a wide variety of tick rates.

A more difficult question is how much computing time is consumed by each call to
tcp_tick(). Rough numbers are less than a millisecond if there is nothing to do, 10s of milli-
seconds for typical packet processing, and 100s of milliseconds under exceptional circumstances.

6.3 TCP Socket
For Dynamic C version 6.57 and above, each socket must have an associated tcp_Socket of
145 bytes or a udp_Socket of 62 bytes. The I/O buffers are in extended memory.

For earlier versions of Dynamic C, each socket must have a tcp_Socket data structure that
holds the socket state and I/O buffers. These structures are, by default, around 4200 bytes each.
The majority of this space is used by the input and output buffers.

There are two ways to open a TCP socket: passive or active.

6.3.1 Passive Open
To wait for someone to contact your device, open a socket with tcp_listen(). This type of
open is commonly used for Internet servers that listen on a well-known port, like 80 for HTTP.
You supply tcp_listen() with a pointer to a tcp_Socket data structure, the local port
number others will be contacting on your device, and the IP address and port number that are valid
for the device. If you want to be able to accept connections from any IP address or any port num-
ber, set one or both to zero.

To handle multiple simultaneous connections, each new connection will require its own
tcp_Socket structure and a separate call to tcp_listen(), but using the same local port
number (lport value.)

The tcp_listen() call will immediately return, and you must poll for the incoming connec-
tion. You can use the sock_wait_established macro, which will call tcp_tick() and
block until the connection is established or you can manually poll the socket using
sock_established.
26 An Introduction to TCP/IP

6.3.1.1 Example of Passive Open
The following example waits for a connection on port 7, and echoes back each line as you enter it.
To test this program, change the configuration information and start it running. From a connected
PC, telnet to the device using port 7.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"

#memmap xmem
#use "dcrtcp.lib"

#define PORT 7

tcp_Socket echosock;

main() {
char buffer[2048];
int status;

sock_init();

while(1) {
tcp_listen(&echosock,PORT,0,0,NULL,0);
sock_wait_established(&echosock,0,NULL,&status);

printf("Receiving incoming connection\n");
sock_mode(&echosock,TCP_MODE_ASCII);

while(tcp_tick(&echosock)) {
sock_wait_input(&echosock,0,NULL,&status);
if(sock_gets(&echosock,buffer,2048))

sock_puts(&echosock,buffer);
}

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* time-out */
printf("\nConnection timed out\n");
break;

}
}

}

An Introduction to TCP/IP 27

6.3.2 Active Open
When your Web browser retrieves a page, it is actively opening one or more connections to the
Web server’s passively opened sockets. To actively open a connection, call tcp_open(), which
uses parameters that are similar to the tcp_listen() call. It is necessary to supply exact
parameters for ina and port, but the lport parameter can be zero, which tells DCRTCP.LIB
to select an unused port between 1024 and 65536.

When you call tcp_open(), Dynamic C tries to contact the other device to establish the con-
nection. tcp_open() will fail and return a zero if the connection could not be opened due to
routing difficulties, such as an inability to resolve the remote host’s hardware address with ARP.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

#define WEBSITE "www.zweng.com"
#define FILE "/"
#define PORT 80

#memmap xmem
#use "dcrtcp.lib"

main() {
int status;
tcp_Socket s;
char buffer[2048];
longword ip;

sock_init();

ip=resolve(WEBSITE);
tcp_open(&s,0,ip,PORT,NULL);
sock_wait_established(&s,0,NULL,&status);

sock_mode(&s,TCP_MODE_ASCII);

sprintf(buffer,"GET %s\r\n",FILE);
sock_puts(&s,buffer);

while(tcp_tick(&s)) {
sock_wait_input(&s,0,NULL,&status);
if(sock_gets(&s,buffer,2048))

printf("%s\n",buffer);
}
return 0;

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* time-out */
printf("\nConnection timed out\n");
break;

}
}

28 An Introduction to TCP/IP

6.3.3 TCP Socket Functions
There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories: control, status, and I/O. Each function is explained in the Dynamic C TCP/IP User’s Man-
ual.

6.3.3.1 Control Functions

tcp_open() and tcp_listen() have already been explained in the active and passive sec-
tions.

sock_close() should be called when you want to end a connection. A call to
sock_close() may not immediately close the connection because it may take some time to
send the request to end the connection and receive the acknowledgements. If you want to be sure
that the connection is completely closed before continuing your program, you can call
tcp_tick() with the address of the socket. When tcp_tick() returns zero, then the socket
is completely closed. Please note that if there is data left to be read on the socket, the socket will
not completely close.

There may be some reason that you want to cancel an open connection. In this case, you can call
sock_abort(). This function will cause a TCP reset to be sent to the other end, and other
future packets sent on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call sock_flush(). This
function will cause DCRTCP.LIB to try sending any pending data immediately. If you know
ahead of time that data will need to be sent immediately, call sock_flushnext()on the
socket. This function will cause the next set of data written to the socket to be sent immediately,
and is more efficient than sock_flush().

• sock_abort() • sock_flushnext()

• sock_close() • tcp_listen()

• sock_flush() • tcp_open()
An Introduction to TCP/IP 29

6.3.3.2 Status Functions

When you supply tcp_tick() with a pointer to a TCP socket, it will first process the packets
and then check to see if the socket has an established connection. It returns a zero if the socket is
no longer open because of an error condition or if the socket has been closed. You can use this
functionality after calling sock_close() on the socket to determine whether the socket is com-
pletely closed.

sock_close(&my_socket);

while(tcp_tick(&my_socket)) {
// check time-out, do idle work...

}

The status functions can be used to avoid blocking when using sock_write() and some of the
other I/O functions. The following blocks of code illustrate a way of using the buffer management
and socket management functions to avoid blocking. The first block of code checks to make sure
that there is enough room in the buffer before adding data with a blocking function. The second
makes sure that there is a string terminated with a new line in the buffer, or that the buffer is full
before calling sock_gets().

if(sock_tbleft(&my_socket,size)) {
sock_write(&my_socket,buffer,size);

}

or:

sock_mode(&my_socket,TCP_MODE_ASCII);

if(sock_bytesready(&my_socket) != -1) {
sock_gets(buffer,MAX_BUFFER);

}

• sock_bytesready() • sock_tbleft()

• sock_established() • sock_tbsize()

• sock_rbleft() • sock_tbused()

• sock_rbsize() • tcp_tick()

• sock_rbused()
30 An Introduction to TCP/IP

6.3.3.3 I/O Functions

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, but you can change that with a call to sock_mode().

When a socket is in ASCII mode, DCRTCP.LIB assumes that the data is an ASCII stream with
record boundaries on the newline characters for some of the functions. This behavior means
sock_bytesready() will return >=0 only when a complete newline-terminated string is in
the buffer or the buffer is full. The sock_puts() function will automatically place a newline
character at the end of a string, and sock_gets() will strip the newline character.

When in binary mode, do not use sock_gets().

6.4 UDP Interface

The UDP protocol is useful when sending messages where either a lost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.
Another advantage of UDP is the ability to broadcast packets to a number of computers on the
same network. When done properly, broadcasts can reduce overall network traffic because infor-
mation does not have to be duplicated when there are multiple destinations.

• sock_fastread() • sock_putc()

• sock_fastwrite() • sock_puts()

• sock_getc() • sock_read()

• sock_gets • sock_write()

• sock_preread()

• sock_fastread() • sock_read()

• sock_fastwrite() • sock_recv()

• sock_getc() • sock_recv_from()

• sock_gets • sock_recv_init()

• sock_putc() • sock_write()

• sock_puts() • udp_open()
An Introduction to TCP/IP 31

6.4.1 Opening and Closing
The udp_open() function takes a remote IP address and port number. If they are set to a spe-
cific value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to the
one socket).

If the remote IP address is set to -1, it receives any packet, and outgoing packets are broadcast. If
the remote IP address is set to 0, no outgoing packets may be sent until a packet has been received.
This first packet completes the socket, filling in the remote IP address and port number with the
return address of the incoming packet. Multiple sockets can be opened on the same local port, with
the remote address set to 0, to accept multiple incoming connections from separate remote hosts.
When you are done communicating on a socket that was started with a 0 IP address, you can close
it with sock_close() and reopen to make it ready for another source.

6.4.2 Writing
The normal socket functions you used for writing to a TCP socket will work for a UDP socket, but
since UDP is a significantly different service, the result could be different. Each atomic write—
sock_putc(), sock_puts(), sock_write(), or sock_fastwrite()—places its data
into a single UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data
received may be different either in order or content than the data sent.

6.4.3 Reading
There are two ways to read packets using DCRTCP.LIB. The first method uses the normal
sock_getc(), sock_gets(), sock_read(), and sock_fastread() functions. These
functions will read the data as it came into the socket, which is not necessarily the data that was
written to the socket.

The second mode of operation for reading uses sock_recv_init(), sock_recv(), and
sock_recv_from(). The sock_recv_init() function installs a large buffer area that gets
divided into smaller buffers. Whenever a datagram arrives, DCRTCP.LIB stuffs that datagram
into one of these new buffers. sock_recv() scans the buffers for any datagrams received by
that socket. If there is a datagram, the length is returned and the user buffer is filled, otherwise it
returns zero.

The sock_recv_from() function works like sock_recv(), but it allows you to record the
IP address where the datagram originated. If you want to reply, you can open a new UDP socket
with the IP address modified by sock_recv_from(). There is no way to send UDP packets
without a socket.

After calling sock_recv_init() on the socket, you should not use sock_getc(),
sock_read(), or sock_fastread().

6.4.4 Checksums
There is an optional checksum field inside the UDP header. This field verifies only the header
portion of the packet and doesn’t cover any part of the data. This feature can be disabled on a reli-
able network where the application has the ability to detect transmission errors. Disabling the UDP
checksum can increase the performance of UDP packets moving through DCRTCP.LIB. This
feature can be modified by:

sock_mode(s, UDP_MODE_CHK); // enable checksums
sock_mode(s, UDP_MODE_NOCHK); // disable checksums
32 An Introduction to TCP/IP

6.5 Program Design
When designing your program, you must place some thought into how it will be structured. If you
plan on using the state-based approach, you need to select the appropriate functions.

6.5.1 State-Based Program Design
One strategy for designing your program with Dynamic C is to create a state machine within a
function where you pass it the socket. This method allows you to handle multiple sockets without
the services of a multitasking kernel. This is the way the HTTP.LIB functions are organized (see
HTTP in the Dynamic C TCP/IP User’s Manual). The general states are waiting to be initialized,
waiting for a connection, a bunch of connected states, and waiting for the socket to be closed.
Many of the common Internet protocols fit well into this state machine model. An example of
state-based programming is SAMPLES\TCPIP\STATE.C. This program is a basic Web server
that should work with most browsers. It allows a single connection at a time, but could easily be
extended to allow multiple connections.

6.5.2 Blocking vs. Non-Blocking
The sock_fastread() and sock_preread() functions read as much data as is available in
the buffers, and return immediately. Similarly, sock_fastwrite() fills the buffers and returns
the number of characters that were written. When using these functions, it is your responsibility to
ensure that all of the data were written completely.

offset=0;

while(offset<length) {
bytes_written=sock_fastwrite(&socket,buffer+offset,length-offset);
if(bytes_written<0) {

// error handling
}
offset+=bytes_written;

}

The other functions do not return until they have completed or there is an error. If it is important to
avoid blocking, you can check the conditions of an operation to insure that it will not block.

sock_mode(socket,TCP_MODE_ASCII);
...
if (sock_bytesready(&my_socket) != -1){

sock_gets(buffer,MAX_BUFFER);
}

In this case sock_gets() will not block because it will be called only when there is a complete
new line terminated record to read.
An Introduction to TCP/IP 33

6.5.3 Blocking Macros
To block at a certain point and wait for a condition, DCRTCP.LIB provides some macros to make
this task easier. In this program fragment, sock_wait_established is used to block the pro-
gram until a connection is established. Notice the time-out (second parameter) value of zero. This
tells Dynamic C to never time-out. Associated with these macros is a sock_err label to jump to
when there is an error. If you supply a pointer to a status integer, it will set the status to an error
code. Valid error codes are -1 for time-out and 1 for a reset connection.

tcp_open(&s,0,ip,PORT,NULL);
sock_wait_established(&s,0,NULL,&status);

//...

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* time-out */
printf("\nConnection timed out\n");
break;

}

6.6 Multitasking and TCP/IP
The TCP/IP engine may be used with the µC/OS real-time kernel. The line

#use ucos2.lib

must appear before the line

#use dcrtcp.lib
34 An Introduction to TCP/IP

7. References

1. A two-part article, Introduction to TCP/IP, in Embedded Systems Programming discusses
issues related to programming embedded systems.

http://www.embedded.com/internet/9912/9912ia1.htm

2. Ethereal is a good, free program for viewing network traffic. It works under various Unix
operating systems and under Windows.

http://www.ethereal.com

3. Computer Networks and Internets, Douglas E. Comer. Published by Prentice Hall. ISBN 0-
13-239070-1. This book gives an excellent high-level description of networks and their
interfaces.

4. TCP/IP Illustrated, Volume 1 The Protocols, W. Richard Stevens. Published by Addison-
Wesley. ISBN 0-20-163346-9. This book gives many useful low-level details about TCP/IP,
UDP and ICMP.
An Introduction to TCP/IP 35

http://www.embedded.com/internet/9912/9912ia1.htm
http://www.ethereal.com

36 An Introduction to TCP/IP

Notice to Users
Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE
AS CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES
OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREE-
MENT REGARDING SUCH INTENDED USE IS ENTERED
INTO BETWEEN THE CUSTOMER AND Z-WORLD PRIOR
TO USE. Life-support devices or systems are devices or systems
intended for surgical implantation into the body or to sustain life,
and whose failure to perform, when properly used in accordance
with instructions for use provided in the labeling and user’s man-
ual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are
always present in a system of any size. In order to prevent danger to
life or property, it is the responsibility of the system designer to
incorporate redundant protective mechanisms appropriate to the
risk involved.

The TCP/IP software is designed for use only with Rabbit Semi-
conductor chips.
An Introduction to TCP/IP 37

	Table of Contents
	�1. Introduction
	�2. Ethernet Basics
	2.1� Ethernet Address
	2.2� Physical Connections
	2.2.1� Cables

	2.3� Frames
	2.3.1� Collisions

	�3. Networks
	3.1� LAN
	3.1.1� Repeaters and Bridges

	3.2� WAN
	3.2.1� Packet Switches
	3.2.2� Forwarding a Packet

	3.3� VPN
	3.4� Network Devices
	3.4.1� Routers
	3.4.2� Firewalls
	3.4.3� Gateways

	3.5� Network Architecture
	3.5.1� Client/Server Networks
	3.5.1.1 Port Numbers

	�4. Network Protocol Layers
	4.1� Layering Models
	4.2� TCP/IP Protocol Stack

	�5. TCP/IP Protocols
	5.1� IP
	5.1.1� IP Address
	5.1.2� IP Address Classes
	5.1.3� Netmasks
	5.1.4� Subnet Address
	5.1.5� Directed Broadcast Address
	5.1.6� Limited Broadcast Address

	5.2� IP Routing
	5.3� ARP
	5.4� The Transport Layer
	5.4.1� UDP
	5.4.2� TCP
	5.4.2.1 TCP Connection/Socket
	5.4.2.2 TCP Header

	5.4.3� ICMP

	5.5� The Application Layer
	5.5.1� DNS
	5.5.1.1 DCRTCP.LIB Implementation of DNS

	�6. Dynamic C TCP/IP Implementation
	6.1� TCP/IP Configuration Macros
	6.1.1� IP Addresses Set Manually
	6.1.2� IP Addresses Set Dynamically
	6.1.3� Default Buffer Size
	6.1.4� Delay a Connection
	6.1.5� Runtime Configuration

	6.2� Skeleton Program
	6.3� TCP Socket
	6.3.1� Passive Open
	6.3.1.1 Example of Passive Open

	6.3.2� Active Open
	6.3.3� TCP Socket Functions
	6.3.3.1 Control Functions
	6.3.3.2 Status Functions
	6.3.3.3 I/O Functions

	6.4� UDP Interface
	6.4.1� Opening and Closing
	6.4.2� Writing
	6.4.3� Reading
	6.4.4� Checksums

	6.5� Program Design
	6.5.1� State-Based Program Design
	6.5.2� Blocking vs. Non-Blocking
	6.5.3� Blocking Macros

	6.6� Multitasking and TCP/IP

	�7. References
	Notice to Users

