
 



 

 1995 Microchip Technology Inc. DS30027I - page i

 

   Table of Contents

 

Preface .........................................................................................................1

 

I/O Timing ........................................................................................1
Execution Speed .............................................................................1
Cost  ..............................................................................................1
Debugging Tool ...............................................................................1

 

Chapter 1.  Introduction ...................................................................................3

 

Introduction ......................................................................................3
Highlights .........................................................................................3
Installing MPSIM .............................................................................3

System Requirements .......................................................3
Document Conventions ...................................................................4
Terminology .....................................................................................4

Breakpoints .......................................................................4
Program Counter (PC) ......................................................4
Disassembler ....................................................................4
Step ...................................................................................4
Symbols ............................................................................5
Trace .................................................................................5
View screen ......................................................................5

Device-Specific Support ..................................................................5
Customer Support ...........................................................................5

 

Chapter 2.  The MPSIM Environment ..............................................................7

 

Introduction ......................................................................................7
Highlights .........................................................................................7
User Interface ..................................................................................8
Invoking MPSIM ..............................................................................9
I/O Pins ............................................................................................9

I/O Pin Modeling ...............................................................9
Pin Signals ......................................................................10

CPU Model ....................................................................................10
Reset Conditions .............................................................10
Sleep ...............................................................................11
WDT ................................................................................11
Registers .........................................................................11

Hardware Stack .............................................................................12
Push ................................................................................12
Pop ..................................................................................12

Files Used and Generated By MPSIM ..........................................12
Command Files ...............................................................13
Initialization File ..............................................................13
Journal File .....................................................................13
Stimulus File ...................................................................13
Files Generated by the Assembler ..................................14
Listing File .......................................................................15
Input Hex File ..................................................................15
Output Hex File ...............................................................15
Symbol File .....................................................................15
Trace File ........................................................................15
HEX Code Formats .........................................................15

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page ii

 



 

 1995 Microchip Technology Inc.

 

Chapter 3.  Tutorial..........................................................................................17

 

Introduction ....................................................................................17
Highlights .......................................................................................17
Assemble the Code .......................................................................18
Invoke the Simulator ......................................................................18

MPSIM.INI .......................................................................19
Load the Initialization File ..............................................................19

Creating an initialization file ............................................19
Load the Hex File ...........................................................................21
Load the Stimulus File ...................................................................22
Set Up Trace Parameters ..............................................................23
Set Up Breakpoints ........................................................................25
Execute the Hex Code ...................................................................26
Modify the Hex Code .....................................................................27
Exit the MPSIM Session ................................................................28

 

Chapter 4.  Functional Categories of MPSIM Commands ...........................29

 

Introduction ....................................................................................29
Highlights .......................................................................................29
Loading and Saving .......................................................................30
Inspecting And Modifying ...............................................................30

Program Memory ............................................................30
Registers .........................................................................32
Display Functions ............................................................33
Patch Table .....................................................................34
Clearing Memory and Registers ......................................34
Searching Memory ..........................................................34
Symbol Table ..................................................................35
Restore ............................................................................35

Execute and Trace .........................................................................36
Execution Instructions .....................................................36
Tracing Execution ...........................................................36
Breakpoints .....................................................................38

View Screen ...................................................................................39
Miscellaneous Commands .............................................................40
MPSIM Commands ........................................................................41

 

Chapter 5.  MPSIM Commands ......................................................................47

 

Introduction ....................................................................................47
Alphabetic Summary of MPSIM Commands .................................47
AB – Abort Session ........................................................................54
AD – Add Item to View Screen ......................................................54
B – Set Breakpoint .........................................................................56
BC – Clear Breakpoint ...................................................................57
C – Continue Executing .................................................................57
CK – Clock .....................................................................................58
DB – Display All Active Breakpoints ..............................................59
DE – Delete Program Memory .......................................................59
DI – Display Program Memory in Symbolic Format .......................60
DK – Define Key ............................................................................61
DL – Delete Symbol from Symbol Table ........................................62
DM –Display Program Memory in Radix Designated Format ........ 63
DP – Display All Patches ...............................................................64
DR – Display All Registers .............................................................64
DS – Display Symbol Table ...........................................................65



 



 

 1995 Microchip Technology Inc. DS30027I - page iii

 

DV – Delete View Screen Item ......................................................65
DW – Enable / Disable Watchdog Timer .......................................66
DX – Display Current Trace Parameters .......................................66
E – Execute Program ....................................................................67
EE – Modify EE Memory ...............................................................68
EL – Error Level ............................................................................68
F – File Register Display/Modify ....................................................69
FI – File Input ................................................................................70
FM – Fill Memory ...........................................................................71
FW – Fuse Word ...........................................................................72
GE – Get Commands from an External File ..................................73
GO – Reset and Execute ..............................................................74
GS – Generate Symbol .................................................................74
H – Help ........................................................................................75
IA – Insert/Inspect Assembly Code ...............................................76
IN – Insert Instruction ....................................................................77
IP – Injection Point ........................................................................77
IR – Initialize with Random Values ................................................78
LJ – Load and Execute Journal File ..............................................79
LO – Load Object File ...................................................................79
LR – Load Registers ......................................................................80
LS – Load Symbol File ..................................................................81
M – Display / Modify Program Memory at Address .......................82
NV – No View Screen ....................................................................83
O – Output Modified Object Code .................................................83
P – Select Microcontroller .............................................................84
Q – Quit .........................................................................................85
RA – Restore All ............................................................................85
RE – Reset Elapsed Time and Step Count ...................................86
RP – Restore Patches ...................................................................86
RS – Reset Chip ............................................................................87
SC – Display / Modify Processor Cycle Time ................................87
SE – Display / Modify I/O Pin ........................................................88
SF – Search Program Memory for Register ..................................  89
SI – Search Program Memory in Symbolic Format .......................90
SM – Search Program Memory in Radix Designated Format .......  90
SR – Set Radix ..............................................................................91
SS – Execute A Single Step ..........................................................92
ST – Read Stimulus File ................................................................92
TA – Trace Address ......................................................................93
TC – Trace Instructions .................................................................94
TF – Trace to File/Printer ..............................................................95
TR – Trace Register ......................................................................95
TY – Change View Screen ............................................................96
UR – Upload Registers ..................................................................97
V – View Screen ............................................................................98
Verbose – Echo to Screen ............................................................99
W – Work Register Display / Modify ..............................................99
WP – Watchdog Timer Period .....................................................100
ZM – Zero the Program Memory .................................................100
ZP – Zero the Patch Table ..........................................................101
ZR – Zero the Registers ..............................................................101
ZT – Zero the Elapsed Time Counter ..........................................102



 

MPSIM USER’S GUIDE

 

DS30027I - page iv

 



 

 1995 Microchip Technology Inc.

 

Appendix A. Troubleshooting Guide ..............................................................103

 

Introduction ..................................................................................103
Solutions to Some Common Problems ........................................103
Messages ....................................................................................105

Informative Messages ...................................................105
Warning Messages .......................................................106
Error Messages .............................................................113

 

Appendix B. Sample File Listings...................................................................117

 

MPSIM.INI ...................................................................................117
PIC16C5X.INC .............................................................................117
PIC16CXX.INC ............................................................................119
PIC17CXX.INC ............................................................................128
SAMPLE.ASM .............................................................................132
SAMPLE.INI .................................................................................133
SAMPLE.STI ................................................................................134

 

Appendix C. Customer Support ......................................................................135

 

Keeping Current with Microchip Systems ....................................135
Highlights .....................................................................................135
Systems Information and Upgrade Hot Line ................................136
Connecting to Microchip BBS ......................................................136
Using the Bulletin Board ..............................................................137

Special Interest Groups .................................................137
Files ...............................................................................137
Mail ................................................................................138

Software Releases .......................................................................138
Alpha Release ...............................................................138
Intermediate Release ....................................................139
Beta Release .................................................................139
Production Release .......................................................139

 

Appendix D. Intel INTELLEC

 



 

 Hexadecimal Format ....................................141

 

INHX8M .......................................................................................142
8-Bit Hex Format: ..........................................................142
32-Bit Hex Format (.HEX) .............................................143

 

Appendix E. PIC16C5X User’s Guide Addendum..........................................145

 

Introduction ..................................................................................145
I/O Pins ........................................................................................145
CPU Model ..................................................................................145

Reset Conditions ...........................................................145
Sleep .............................................................................146
WDT ..............................................................................146
Stack .............................................................................146

Special Registers .........................................................................146
Peripherals ...................................................................................147

Peripherals Supported ..................................................147

 

Appendix F. PIC16C64 User’s Guide Addendum ..........................................149

 

Introduction ..................................................................................149
I/O Pins ........................................................................................149
Interrupts ......................................................................................149
CPU Model ..................................................................................150

Reset Conditions ...........................................................150
Sleep .............................................................................150



 



 

 1995 Microchip Technology Inc. DS30027I - page v

 

WDT ..............................................................................150
Stack .............................................................................150

Special Registers ........................................................................151
Peripherals ..................................................................................151

Peripherals Supported ..................................................151
Tcycle Limitation ...........................................................151
TIMER0 .........................................................................152
TIMER1 .........................................................................152
TIMER2 .........................................................................152
CCP1 ............................................................................153

CAPTURE ..............................................................153
COMPARE .............................................................153
PWM ......................................................................153
SSP ........................................................................153

 

Appendix G. PIC16C65 User’s Guide Addendum..........................................155

 

Introduction ..................................................................................155
I/O Pins ........................................................................................155
Interrupts .....................................................................................155
CPU Model ..................................................................................156

Reset Conditions ...........................................................156
Sleep .............................................................................156
WDT ..............................................................................156
Stack .............................................................................156

Special Registers ........................................................................157
Peripherals ..................................................................................157

Peripherals Supported ..................................................157
Tcycle Limitation ...........................................................158
TIMER0 .........................................................................158
TIMER1 .........................................................................158
TIMER2 .........................................................................159
CCP1 and CCP2 ...........................................................159

CAPTURE ..............................................................159
COMPARE .............................................................159
PWM ......................................................................159

SSP ...............................................................................159
USART ..........................................................................159

 

Appendix H. PIC16C71 User’s Guide Addendum..........................................161

 

Introduction ..................................................................................161
I/O Pins ........................................................................................161
Interrupts .....................................................................................161
CPU Model ..................................................................................162

Reset Conditions ...........................................................162
Sleep .............................................................................162
WDT ..............................................................................162
Stack .............................................................................162

Special Registers ........................................................................163
Peripherals ..................................................................................163

Peripherals Supported ..................................................163
Tcycle Limitation ...........................................................163
TIMER0 .........................................................................164
A/D Converter ...............................................................164



 

MPSIM USER’S GUIDE

 

DS30027I - page vi

 



 

 1995 Microchip Technology Inc.

 

Appendix I. PIC16C73 User’s Guide Addendum ..........................................165

 

Introduction ..................................................................................165
I/O Pins ........................................................................................165
Interrupts ......................................................................................165
CPU Model ..................................................................................166

Reset Conditions ...........................................................166
Sleep .............................................................................166
WDT ..............................................................................166
Stack .............................................................................166

Special Registers .........................................................................167
Peripherals ...................................................................................167

Peripherals Supported ..................................................167
Tcycle Limitation ...........................................................168
TIMER0 .........................................................................168
TIMER1 .........................................................................168
TIMER2 .........................................................................169
CCP1 and CCP2 ...........................................................169

CAPTURE ..............................................................169
COMPARE .............................................................169
PWM ......................................................................169

SSP ...............................................................................169
USART ..........................................................................169
A/D Converter ...............................................................169

 

Appendix J. PIC16C74 User’s Guide Addendum ..........................................171

 

Introduction ..................................................................................171
I/O Pins ........................................................................................171
Interrupts ......................................................................................171
CPU Model ..................................................................................172

Reset Conditions ...........................................................172
Sleep .............................................................................172
WDT ..............................................................................172
Stack .............................................................................172

Special Registers .........................................................................173
Peripherals ...................................................................................173

Peripherals Supported ..................................................173
Tcycle Limitation ...........................................................174
TIMER0 .........................................................................174
TIMER1 .........................................................................174
TIMER2 .........................................................................175
CCP1 and CCP2 ...........................................................175

CAPTURE ..............................................................175
COMPARE .............................................................175
PWM ......................................................................175

SSP ...............................................................................175
USART ..........................................................................175
A/D Converter ...............................................................175

 

Appendix K. PIC16C84 User’s Guide Addendum ..........................................177

 

Introduction ..................................................................................177
I/O Pins ........................................................................................177
Interrupts ......................................................................................177
CPU Model ..................................................................................177

Reset Conditions ...........................................................177
Sleep .............................................................................178



 



 

 1995 Microchip Technology Inc. DS30027I - page vii

 

WDT ..............................................................................178
Stack .............................................................................178

Special Registers ........................................................................178
Peripherals ..................................................................................179

Peripherals Supported ..................................................179
Tcycle Limitation ...........................................................179
TIMER0 .........................................................................179
EEPROM Data Memory ................................................179

 

Appendix L. PIC17C42 Support ......................................................................181

 

Introduction ..................................................................................181
I/O Pins ........................................................................................181
Special Function Registers ..........................................................182
Interrupts .....................................................................................183
CPU Model ..................................................................................183

Reset Conditions ...........................................................183
Sleep .............................................................................183
WDT ..............................................................................184
Stack .............................................................................184
Instruction Set ...............................................................184

Special Registers ........................................................................184
Peripherals ..................................................................................185

Tcycle Limitation ...........................................................185
TIMER0 .........................................................................185
TIMER1 and TIMER2 ....................................................186
TIMER3 and Capture ....................................................186

PWM ......................................................................186
USART ..........................................................................186

Memory Modes ............................................................................186

 

Appendix M. PIC17C43 Support ......................................................................187

 

Introduction ..................................................................................187
 I/O Pins .......................................................................................187
Special Function Registers ..........................................................187
Interrupts .....................................................................................188
CPU Model ..................................................................................189

Reset Conditions ...........................................................189
Sleep .............................................................................189
WDT ..............................................................................189
Stack .............................................................................189
Instruction Set ...............................................................190

Special Registers ........................................................................190
Peripherals ..................................................................................190

Tcycle Limitation ...........................................................191
TIMER0 .........................................................................191
TIMER1 and TIMER2 ....................................................191
TIMER3 and Capture ....................................................192

PWM ......................................................................192
USART ..........................................................................192

Memory Modes ............................................................................192



 

MPSIM USER’S GUIDE

 

DS30027I - page viii

 



 

 1995 Microchip Technology Inc.

 

Appendix N. PIC17C44 Support ......................................................................193

 

Introduction ..................................................................................193
I/O Pins ........................................................................................193
Special Function Registers ..........................................................193
Interrupts ......................................................................................194
CPU Model ..................................................................................194

Reset Conditions ...........................................................194
Sleep .............................................................................194
WDT ..............................................................................195
Stack .............................................................................195
Instruction Set ...............................................................195

Special Registers .........................................................................195
Peripherals ...................................................................................196

Tcycle Limitation ...........................................................196
TIMER0 .........................................................................196
TIMER1 and TIMER2 ....................................................197
TIMER3 and Capture ....................................................197

PWM ......................................................................197
USART ..........................................................................197

Memory Modes ............................................................................197

 

Worldwide Sales & Services...................................................................................198



 



 

 1995 Microchip Technology Inc. DS30027I - page 1

 

Preface

 

MPSIM is a discrete-event simulator tool designed to:

• Imitate operation of Microchip Technology’s PIC16C5X, PIC16CXX and 
PIC17CXX families of microcontrollers

• Assist users in debugging software that uses Microchip microcontroller 
devices

A discrete-event simulator, as opposed to an in-circuit emulator, is designed to 
aid in the debugging of the general logic of your software. The MPSIM 
discrete-event simulator allows users to modify object code and immediately 
re-execute, inject external stimuli to the simulated processor, and trace the 
execution of the object code. A simulator differs from an in-circuit emulator in 
three important areas: I/O timing, execution speed, and cost.

This manual covers MPSIM version 5.0 and later.

 

I/O Timing

 

External timing in MPSIM is processed only once during each instruction 
cycle. Transient signals, such as a spike on MCLR smaller than an instruction 
cycle will not be simulated but may be caught by an in-circuit emulator. In 
MPSIM, external stimulus is injected just before the next instruction cycle 
execution.

 

Execution Speed

 

The execution speed of a discrete-event simulator is several orders of 
magnitude less than a hardware-oriented solution. Users may view slower 
execution speed as a handicap or a blessing. Some discrete-event simulators 
are unacceptably slow. MPSIM however, attempts to provide the fastest 
possible simulation cycle.

 

Cost

 

The cost of the debugging tool may be an issue with some developers. For 
this reason, Microchip Technology has developed this simulator to be a cost-
effective tool for debugging application software. MPSIM does not require any 
external hardware to the PC, which keeps the cost at a minimum.

 

Debugging Tool

 

The simulator, however, is a great debugging tool. It is particularly suitable for 
optimizing algorithms. Unlike the emulator, the simulator makes many internal 
registers visible and can provide more complex break points.

If you are a new user, refer to Chapter 3 for a “Getting Started” tutorial.

Device specific information is provided in the appendices at the end of the 
manual. 

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 2

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 3

 

Chapter 1.   Introduction

 

Introduction

 

MPSIM is a discrete-event simulator designed to aid you in debugging your 
software applications for Microchip Technology’s PIC16C5X, PIC16CXX, and 
PIC17CXX microcontrollers. 

 

Highlights

 

Whether you are an experienced user or a beginner, we strongly suggest that 
you read this chapter first since it provides information about:

• Installing MPSIM 

• Documentation Conventions

• Terminology

• Device-Specific Support

• Customer Support 

If this is your first time using MPSIM we also suggest that you go through the 
tutorial provided in Chapter  3. This tutorial introduces all files that are used or 
generated by the simulator and provides a good introduction to some of the 
most widely-used commands. 

 

Installing MPSIM

 

System Requirements

 

MPSIM requires an IBM

 



 

 PC/AT

 



 

 or compatible running DOS version 5.0 or 
later. The PC needs a 3 1/2 inch floppy disk drive and at least 640K main 
memory. We recommend a hard disk with at least 5 MB of available space. 

• On the PC, create a new directory for the MPSIM software and change 
to that directory:

 

MKDIR SIM<RETURN>

CD SIM<RETURN>

 

• Copy all the files on the MPSIM diskette into the above directory:

 

COPY a:\*.* 

 

After loading the software, MPSIM is ready to run.

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 4

 



 

 1995 Microchip Technology Inc.

 

Document Conventions 

 

This section describes the conventions this manual uses for the data you are 
to enter.

 

Terminology

 

Breakpoints

 

Source code locations where you want the code to cease execution.

 

Program Counter (PC)

 

The address in the loaded program at which execution will begin or resume.

 

Disassembler 

 

Converts modified object code back into assembly-language code when a 
listing file wasn’t loaded. Thus, mnemonic information can display even when 
you have made changes.

 

Step

 

A single executable instruction. You can single-step through a program by 
executing one instruction at a time with the SS command. A stimulus file can 
inject values onto specified pins at specified steps.

 

TABLE 1.1- CHARACTER CONVENTIONS

 

Character Represents

 

Square ([ ]) brackets Optional arguments

Curly ({ }) brackets Braces indicate group options. One or more 
options in the group is required.

Angle (< >) brackets Delimiters for special keys: <TAB>, <ESC>, 
etc.

Pipe (|) characters Choice of mutually exclusive arguments; an 
OR selection

Lower case characters Type of data

 

Italic characters

 

A variable argument; it can be either a type of 
data (in lower case characters) or a specific 
example (in uppercase characters)

 

Courier font

 

User keyed data or output from the system



 



 

 1995 Microchip Technology Inc. DS30027I - page 5

 

Chapter 1. Introduction

 

Symbols

 

Alphanumeric identifiers such as labels, constant names, bit location names 
and file register names. MPSIM understands both explicit data/addresses and 
symbols.

 

Trace

 

A trace file can be created to illustrate the execution flow of your program. 
Each line in the trace file contains the object code, source line, step number, 
elapsed time, and file registers that have changed. Trace can be limited to a 
range of addresses, or to a specific file register address. Please see Chapter 
3 “Tutorial” for examples on the trace file. When you trace the instructions, 
they always display on the screen. If you previously opened a trace file and 
have not closed it, MPSIM also appends the trace to the file.

 

View screen

 

The portion of your monitor that dynamically displays the values in specified 
data areas. It is seven lines long. The V command creates a view screen; the 
AD command adds data areas to the display; the DV command deletes data 
area from the display; and the NV command deletes all data areas from the 
view screen.

 

Device-Specific Support

 

MPSIM provides support for more than one family of microcontrollers. 
Chapters 1 - 5 contain general information about MPSIM, regardless of the 
target processor. Device-specific information can be found in the appendices 
at the end of this manual. 

 

Customer Support

 

If you have any questions about MPSIM, the first step is to check in 

 

Appendix A: Troubleshooting Guide

 

, which contains a troubleshooting 
guide that provides some common error messages and their possible causes. 

 

Appendix C: Customer Support

 

 provides detailed information about how to 
connect to the Microchip Technology BBS. The BBS contains the most up-to-
date development systems software, application notes, as well as a variety of 
other useful information. If you still cannot find the answer, contact the sales 
office nearest you. Information and telephone numbers are presented on the 
last page of the manual.



 

MPSIM USER’S GUIDE

 

DS30027I - page 6

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 7

 

Chapter 2.   The MPSIM Environment

 

Introduction

 

Chapter 2 provides an introduction to the MPSIM debugging environment. It 
describes all data areas that can be simulated and presents general 
information about using the simulator. This chapter is highly recommended for 
first-time users.

 

Highlights

 

The following topics will be covered:

•  User Interface

• Invoking MPSIM

• I/O Pins

• CPU Model

• Hardware Stack

• Files Used and Generated By MPSIM 

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 8

 



 

 1995 Microchip Technology Inc.

 

User Interface

 

The user interface consists of three areas: the title line, the view screen and a 
command entry/display region. The title line remains in a fixed location at the 
top of the screen and lists the current hex file, the radix, the MPSIM version, 
the controller being simulated, cycle steps and elapsed time.

The view screen displays user selected pin and register values. This area is 
created by the user typically through an initialization command file. This file 
will be in greater detail later in this chapter in “Files Used and Generated by 
MPSIM”.

The command entry/display region occupies the remainder of the screen. Use 
this area to enter commands; MPSIM enters any responses to a command on 
the line or lines immediately following the command.

MPSIM can be invoked with any or a combination of the following options:

 

Figure 2.1   Start-up

Option Description Default

 

-v verbose off

-m monochrome mode off

-a ASCII only off

RADIX=X MPSIM 16c55 TIME=0.00p 0

x

Title Line

View Screen

Command Entry



 



 

 1995 Microchip Technology Inc. DS30027I - page 9

 

Chapter 2. The MPSIM Environment

Invoking MPSIM

 

Invoke MPSIM by typing MPSIM at the DOS prompt, or by typing MPSIM_DP 
for the PIC17C42 in the extended microcontroller or microprocessor mode. 
MPSIM is faster than MPSIM_DP. MPSIM_DP supports the larger memory 
modules. 

To load a file into the simulator, use the following command:

 

%LO

 

 

 

filename

 

 [FORMAT] <RETURN>

 

The ‘%’ is MPSIM’s prompt. Exit MPSIM by using the AB or Q command. 
Obtain help with the H command.

 

I/O Pins

 

There is a list of viewable and modifiable pins for each microcontroller in its 
appendix. These pin names are loaded when a processor is selected and are 
the only ones that MPSIM recognizes as valid.

 

I/O Pin Modeling

 

Because a conflict can occur when a pin is being driven internally (via an 
instruction) and externally (via stimulus file), the following table is provided to 
illustrate the possible conditions and the order in which MPSIM processes it.

Is the pin being 
driven 
externally?

Is the pin 
being 
driven 
internally
?

Resolution

Yes Yes Chip wins.

No No The pins are essentially floating. The pins 
maintain the last external value they were 
driven.*

Yes No Simple.

No Yes Simple.

 

* Note that this does not represent the actual behavior of the circuit when the I/O 
pin was last driven by the chip. However, typically, a used I/O pin (especially 
CMOS) would not be left floating.



 

MPSIM USER’S GUIDE

 

DS30027I - page 10

 



 

 1995 Microchip Technology Inc.

 

Pin Signals

 

At the end of each instruction all pins are checked for possible input or output.

• If the 

 

MCLR

 

 pin is cleared, MPSIM simulates a 

 

MCLR

 

 reset.

• The TRIS (or DDR for the PIC17CXX) status bits determine how 
MPSIM manipulates the port and file register bits. For example, the 
TRISA, RA0-RA5 and F5 registers work together; the TRISB, RB0-RB7 
and F6 registers work together; and the TRISC, RC0-RC7 and F7 
registers work together, etc.

– For TRIS status register bits that are set, MPSIM reads the 
corresponding port bit into the corresponding file register bit.

– For TRIS status register bits that are cleared, MPSIM writes the 
corresponding file register bit to the corresponding port bit (pin).

• Similarly, if any of the timer inputs are changed, the corresponding timer 
or its prescaler will increment.

• Any peripheral input (such as capture input) is acted upon.

• Any peripheral output (such as serial port output) is presented on the 
pin.

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM. 

A Power-On-Reset, for example, can be simulated by using the RS 
instruction. All special-purpose registers will be initialized to the values 
specified in the Microchip data sheet.

A 

 

MCLR

 

 reset during normal operation or during SLEEP, for example, can 
easily be simulated by driving the 

 

MCLR

 

 pin low (and then high) either via the 
stimulus file or by using the SE command. 

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately for 
the PIC16CXX family or by using the FW command for the PIC17CXX family) 
and WDT actually overflows. WDT time-out period is approximately the 
“normal” time for the device being simulated (to closest instruction cycle 
multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect the 
reset condition. This feature is useful for simulating various power-up and time 
out forks in the user code.



 



 

 1995 Microchip Technology Inc. DS30027I - page 11

 

Chapter 2. The MPSIM Environment

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs. For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting). 

Another example of a wake-up-from-sleep condition, would be Timer1 wake-
up from sleep. In this case, when the processor is asleep, Timer1 would 
continue to increment until it overflows, and if the interrupt is enabled, will 
wake the processor on overflow and branch to the interrupt vector.

Wake-up from SLEEP through interrupt is fully simulated in the PIC16CXX 
and PIC17CXX products.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator. Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM. The period of the WDT is determined by 
the prescaler settings. The basic period (with prescaler = 1) is approximated 
at 18 ms (for the PIC16C5X and PIC16CXX families and 12 ms for the 
PIC17CXX families).

 

Registers

 

MPSIM simulates all registers. Certain special-function registers or non-
mapped registers can be added to the viewscreen or modified like any other 
register. Examples are timer prescaler or postscalers.

All registers are initialized appropriately at various reset conditions.

Please see the appendix of the microcontroller in question for a list of 
additional registers.

 

Register Name Function

 

W Working Register

TRISA Tris register for Port A (PIC16C5X/PIC16CXX)

TRISB Tris register for Port B (PIC16C5X/PIC16CXX)

TRISX (etc)* (etc)*

OPT Option register*

 

* Processor-dependent. For a complete list for a given processor, please refer to 
the device-specific appendix.



 

MPSIM USER’S GUIDE

 

DS30027I - page 12

 



 

 1995 Microchip Technology Inc.

 

Hardware Stack

 

Push

 

The CALL instruction pushes the PC value + 1 to the top of the stack and 
loads the PC with the address of the subroutine being called. If the number of 
CALL instructions exceeds the depth of the stack, MPSIM will issue a “STACK 
OVERFLOW” warning message when executing or single-stepping through 
code. In the PIC16C5X family, the CALL instruction is the only instruction that 
causes an address to be pushed to the stack. The PIC16CXX and PIC17CXX 
families, however, support interrupts. When an interrupt occurs, the PC value 
+ 1 is pushed to the stack and the PC is loaded with the address of the 
interrupt vector. The same error message will also be generated if too many 
addresses are pushed to the stack when MPSIM is executing or single-
stepping through a program.

 

Pop 

 

RETLW instructions in the PIC16C5X and RETLW, RETURN and RETFIE 
instructions in the PIC16CXX and PIC17CXX instruction set remove or “pop” 
the last address pushed to the stack and loads its value into the PC. If an 
attempt is made to pop more values than the stack contains, MPSIM will issue 
a “STACK UNDERFLOW” warning message when executing or single-
stepping through the program. 

Because stack implementation is processor-family dependent, please refer to 
the appendix of the processor family in question for stack simulation.

 

Files Used and Generated By MPSIM

 

MPSIM uses or creates the following I/O files.

• Command files

• Initialization files

• Journal files

• Stimulus files

• Assembler files

• HEX-Code formats

The following sections describe each of these files.



 



 

 1995 Microchip Technology Inc. DS30027I - page 13

 

Chapter 2. The MPSIM Environment

 

Command Files

 

Command files are text files containing MPSIM commands. These MPSIM 
commands are executed with the GE command.

There are two special command files: MPSIM.INI and MPSIM.JRN. 
MPSIM.INI is the initialization file that MPSIM will automatically load on start-
up. MPSIM.JRN is a file containing all commands executed in the previous 
session.

 

Initialization File

 

When MPSIM is invoked, it automatically performs the MPSIM commands in 
MPSIM.INI. Common commands in this file might create a standard view 
screen and/or initialize data areas. Figure 3.2 in Chapter 3 lists an example 
initialization file and Figure 3.3 in Chapter 3 shows the resulting view screen.

 

Journal File

 

If you want to re-execute the most recent MPSIM session, LJ retrieves a list of 
the commands performed during the previous MPSIM session from 
MPSIM.JRN. This file is automatically created each time MPSIM is invoked. If 
you want to retain a journal file, copy it to another filename before reentering 
MPSIM. The first time you reenter MPSIM, the journal file is the same as you 
copied. However, when you exit via Q, the commands from the current 
MPSIM session will overwrite the previous journal file. Thereafter, you can 
access the copied file with GE.

As with all modern CAD/CAE tools, the concept of journal files is carried 
throughout MPSIM. That is, any command entered by the user is 
automatically stored in a journal file (named MPSIM.JRN). The journal file 
remains in the user’s default directory regardless of the termination method 
(Quit or Abort). The LJ command loads and executes the journal file created 
during the previous simulator session. However, it doesn’t store the 
commands from the previous journal file in the current journal file.

Performing the Q command removes the previous journal file, but using the 
AB (Abort) retains old journal file. The current MPSIM session commands are 
written over the previous journal file.

 

Stimulus File

 

This file allows you to schedule bit manipulation by forcing MPSIM to drive 
given pins to given values at a specified input step. This scheduling is via a 
text file called a stimulus file. The stimulus file can force any pin to any value at 
any input step during program execution. The ST command reads the 
stimulus file into MPSIM. When you execute the loaded file with E, each time it 
looks for input, it reads the next step in the stimulus file. The first line of 
stimulus file always consists of column headings. It lists first the word “STEP,” 
followed by the pins that are to be manipulated. The data below STEP 
represents the object file’s input request occurrence. The data below each pin 



 

MPSIM USER’S GUIDE

 

DS30027I - page 14

 



 

 1995 Microchip Technology Inc.

 

name is the input value. You may enter comments at the end of a line by 
preceding it with an exclamation mark (!).   The following example illustrates 
the stimulus file format:

Other notes on the format of stimulus file:

• The steps in the stimulus file must be decimal, regardless of the radix in 
which you run your simulation

• The number of spaces separating data tokens is irrelevant

• Backslash (\) is a continuation mark at the end of a line and indicates 
that the following line continues the statement from the current line

 

Figure 2.2     Stimulus File

 

There are three other ways to inject stimulus to the I/O pins in addition to 
using the stimulus file. A “clock” can be assigned to an I/O pin, Alt-function 
keys can be assigned to the pins (only for use in “execute” mode), and they 
can be modified in “single step” mode. Details and syntax for each command 
can be found in Chapter 5. Please see CK, DK, and SE commands.

 

Files Generated by the Assembler

 

The MPASM assembler generates by default all files necessary, for use with 
MPSIM. To assemble a file, invoke MPASM with the source file name as 
follows:

 

 MPASM 

 

filename

 

The default assembler that MPSIM assumes is MPASM. To specify MPALC as 
the assembler, invoke MPSIM with the “-s” option.

 

STEP pin 1 pin 2 ! These are pin names

8 1 0 ! followed by values

16 0 1

24 1 0

 

Step RB2 RA3 RA2 RA1 RA0       ! Column Headings

 

3 0 0 1 0 0 ! Stimulus before cycle 3

4 1 0 1 0 1 ! Injected before cycle 10

9 1 1 0 1 0 ! Injected before cycle 16

10 0 1 0 1 1 ! Stimulus before cycle 3

15 0 0 0 0 0 ! Injected before cycle 9

16 1 0 0 0 1 ! Injected before cycle 15



 



 

 1995 Microchip Technology Inc. DS30027I - page 15

 

Chapter 2. The MPSIM Environment

 

Listing File

 

The listing file contains the source code the assembler uses to create the 
object code being simulated. To display the source code throughout 
simulation, read in the listing file with the LO command. Otherwise, MPSIM 
uses the disassembler.

 

Input Hex File

 

The input hex file contains the object code generated by the assembler. The 
LO command reads an hex file directly into program memory. The hex code 
format can be INHX8M or INHX8S. The default format is INHX8M.

 

Output Hex File

 

At any time during simulation, the contents of the program memory can 
written to an external file with the O command. The hex code format can be 
INHX8S or INHX8M.

 

Symbol File

 

The assembler generates the symbol file and contains a collection of symbols 
used in the source code. This file is used for symbolic debugging, and is 
automatically loaded when the LO command is used. The RA command 
clears the symbol file, and restores all original values. 

 

Trace File

 

If you open a trace file with the TF command and later trace execution, 
MPSIM writes the specified trace into the trace file as well as displaying the 
trace on-line.

 

HEX Code Formats

 

The simulator is capable of reading or generating two different hex code 
formats as dictated by the LO and O commands: INHX8S or INHX8M. The 
default hex code format that the simulator recognizes is INHX8M, but any file 
format can be loaded by specifying the format when using the LO command. 
For example:

 

LO 

 

Myfile

 

 INHX8S

 

will tell the simulator to load myfile.obh and myfile.obl. (The two files 
necessary for INHX8S format.) Similarly, modified hex code can be saved to 
disk in any format by using the following command:

 

O 

 

Myfile

 

 INHX8M

 

The file that has been loaded into memory in any format will now be saved as 
a file in INHX8M format. 



 

MPSIM USER’S GUIDE

 

DS30027I - page 16

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 17

 

Introduction

 

This chapter provides an introduction to MPSIM, the discrete-event simulator 
for Microchip Technology’s PIC16C5X, PIC16CXX and PIC17CXX families of 
microcontrollers.   It also presents a step-by-step tutorial through a sample 
program, SAMPLE.ASM.  The tutorial is intended to familiarize you with the 
simulator and to provide an introduction to some of the most commonly used 
commands.    The source code for SAMPLE.ASM and the other files used in 
the tutorial are available on your master disk, and can also be found in 
Appendix B at the end of the manual.  If you do not have soft copies of the 
files for the tutorial, they can be created with any ASCII text editor.  It is 
assumed that MPASM and MPSIM have been installed on your hard drive, 
and that all files used in the tutorial are in your working directory.

The program that is used in this tutorial, SAMPLE.ASM, is a software 
multiplier that takes two 8-bit numbers, “mulplr” and “mulcnd”, and places the 
16-bit result in “H_byte” and “L_byte” for the PIC16C54. 

Because this chapter provides some background examples in addition to the 
tutorial, all steps that are part of the tutorial will have a step number  in bold 
text to the left of the command in the margin.

 

Highlights

 

This chapter covers the following information:

• Assemble the Code

• Involk the Simulator

• Load the Initialization File

• Load the Hex File

• Load the Stimulus File

• Set Up Trace Parameters

• Set Up Breakpoints

• Execute the Hex Code

• Modify the Hex Code

• Exit the MPSIM Session

 

Chapter 3.   Tutorial

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 18

 



 

 1995 Microchip Technology Inc.

 

Assemble the Code

 

Before you can begin to use the simulator, you must first assemble 
SAMPLE.ASM.  MPASM generates a hex file in INHX8M format by default.  In 
addition to INHX8M, the following formats can be output:

 

INHX8M

INHX8S

 

There is one default setting that the simulator assumes when it loads your 
code: the file format.  The default file format for MPSIM is INHX8M, but any 
format that either assembler generates can be loaded into the simulator.  

For this tutorial, we want the output file format to be INHX8M (the default 
format used by MPSIM), and the processor type to be PIC16C54.  Type the 
following at the DOS prompt:

 

MPASM 

 

sample

 

 

 

/p16C54

 

 <RETURN>

 

Invoke the Simulator

 

To invoke the simulator, simply type 

 

MPSIM<RETURN> (if using the MPASM assembler)

or

MPSIM -s<RETURN> (if using the MPALC assembler)

 

at the DOS prompt.  

The following screen will display: 

 

Figure 3.1    MPSIM.INI View Screen

STEP 1:

STEP 2:



 



 

 1995 Microchip Technology Inc. DS30027I - page 19

 

Chapter 3. Tutorial

 

MPSIM.INI

 

Observe the information in the command area and the information that is 
displayed in the view screen.  The data areas appear in the view screen 
because an initialization file, MPSIM.INI is in your working directory.  
MPSIM.INI is simply an ASCII file that contains  the same commands that 
appear in the command area.  Every time MPSIM is invoked, it looks for a file 
called MPSIM.INI.  If one exists on your working directory, all of the MPSIM 
commands appearing in that file will be executed, much like a DOS batch file.  
It is important to understand that an initialization file can be named anything.  
MPSIM.INI is unique in that it is automatically loaded when MPSIM is invoked.  

 

Load the Initialization File

 

Initialization files are very useful because they allow you to choose data areas 
that you wish to view, display them on the viewscreen, load your program, and 
create break points–all in one step.  In other words, you can invoke MPSIM, 
load your initialization file, begin debugging, exit MPSIM, and return later, 
easily setting up the viewscreen the same way that you had it when you quit 
the program, simply by loading the initialization file.

 

Creating an initialization file

 

One easy way to create an initialization file is to first invoke the simulator, type 
in commands that set up your viewscreen, set some break points, and then 
quit the simulator.  When you quit, you will notice that a file “MPSIM.JRN” has 
been created.  This “journal” file contains every command that you executed in 
the previous session.  If  the W register, or any other register was added to the 
viewscreen, the commands implementing this will be saved in the journal file.  
This file can then be edited using any text editor to remove commands such 
as “E” (execute) or “Q” (Quit), and then saved under another file name.  It is 
necessary to remove commands such as “E” and “Q” because they will also 
be executed when you load your ANYTHING.INI file, and the simulator would 
set up your viewscreen, execute your code, and quit.  It is also important to 
save the journal file under another name before invoking MPSIM a second 
time. Each time MPSIM is invoked, it overwrites the previous journal file, and if 
you did not rename the journal file, it will contain all commands executed in 
the current session.  



 

MPSIM USER’S GUIDE

 

DS30027I - page 20

 



 

 1995 Microchip Technology Inc.

 

For this example, we will use the initialization file called “SAMPLE.INI”.  We 
will load it by using the following command:

 

GE  

 

sample.ini 

 

<RETURN>

 

MPSIM executes the commands in the following SAMPLE.INI file.

 

Figure 3.2–Sample .INI Initialization File

 

LO SAMPLE
ST SAMPLE
SR X
ZP
ZR
ZT
RE
P 54
NV
AD mulcnd
AD mulplr
AD H_byte
AD L_byte
AD count
AD portb
AD RB7,B,1
AD RB6,B,1
AD RB5,B,1
AD RB4,B,1
AD RB3,B,1
AD RB2,B,1
AD RB1,B,1
AD RB0,B,1

STEP 3:



 



 

 1995 Microchip Technology Inc. DS30027I - page 21

 

Chapter 3. Tutorial

 

This changes the viewscreen so that it displays the data areas that 
SAMPLE.HEX uses, in the most useful format.

 

Figure 3.3– Sample.INI View Screen

 

The commands in this file create the viewscreen shown above and re-initialize 
data areas.  The viewscreen now contains data areas that can be watched 
during the execution of  SAMPLE. 

 

Load the Hex File 

 

Notice that the LO command is listed in the SAMPLE.INI file.  Because of this, 
the hex file was automatically loaded when SAMPLE.INI was loaded.  If the 
LO command were not in the SAMPLE.INI file, you could load the file by 
typing in the following:

 

LO 

 

sample

 

 <RETURN>

 

It is important to realize that because we have assembled the code in the 
MPSIM default format (INHX8M), we do not have to specify the format being 
loaded.  If we had assembled filename in any format other than INHX8M, we 
would have had to load the file in the following way:

 

LO 

 

filename format 

 

<RETURN> 

 

MPSIM loads the named hex file, and then looks for a source file.  If the file is 
available, it also loads the symbol table and the listing file.



 

MPSIM USER’S GUIDE

 

DS30027I - page 22

 



 

 1995 Microchip Technology Inc.

 

Load the Stimulus File

 

SAMPLE.INI has taken care of loading the stimulus file.  You can see in the 
SAMPLE.INI file that the command:

 

ST 

 

sample.sti

 

 <RETURN>

 

was executed when the initialization file was loaded.  

The stimulus file contains values that are to be input to the pins.  When you 
execute the loaded program, at every instruction step specified in the stimulus 
file, MPSIM retrieves the input data, and injects their values to the pins. 

 

Figure 3.4 - SAMPLE.STI Stimulus File

 

The stimulus file for SAMPLE in figure 3.4 writes the multiplier and 
multiplicand values into simulated I/O port B.  Since this port allows up to 
eight bits of data, the maximum value of the multiplier and multiplicand is 
11111111 or 0xFF.  

 

! Stimulus file for SAMPLE.ASM

 

STEP RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 !PortB Pins

3 0 0 0 0 1 0 0 1 ! 9 x 5

5 0 0 0 0 0 1 0 1

65 0 0 0 0 1 0 1 0 ! 10 x 5

67 0 0 0 0 0 1 0 1

127 0 0 0 1 1 0 1 1 ! 27 x 3

129 0 0 0 0 0 0 1 1

191 0 0 0 1 0 0 0 1 ! 17 x 7

193 0 0 0 0 0 1 1 1

253 0 1 0 0 0 0 0 0 ! 64 x 63

255 0 0 1 1 1 1 1 1



 



 

 1995 Microchip Technology Inc. DS30027I - page 23

 

Chapter 3. Tutorial

Set Up Trace Parameters

 

A trace file is a file that contains executed instructions, timing information, and 
registers that have been modified.  Using a trace file can be very helpful in 
determining where to inject stimulus and for creating a “hard copy” of the 
general execution flow of your program.  There are five MPSIM commands 
dealing with traces:

•

 

TF

 

 opens and closes a file for writing the traced data.  

•

 

TA 

 

traces all instructions between two specified addresses

•

 

TC

 

 traces a specified number of instructions.

•

 

TR

 

 traces instructions dealing with specified registers and values.  

•

 

DX

 

 displays the current trace parameters

Try some of the following exercises.  All of the traces in these exercises will be 
printed to a file.  If you would like to try printing your trace to a default printer, 
substitute “PRN” in place of the trace file name.

The first step is to create the trace file:

 

TF 

 

trace1.trc

 

 <RETURN>

 

Next, specify the range of the trace. Then,  begin tracing the instructions. Hit 
any key to interrupt the trace.

 

TA 

 

main, call_m 

 

<RETURN>

TC <RETURN>

 

Restart the system by exiting MPSIM (q <RETURN>), and repeating steps 2 
(Invoke the Simulator) and 3 (Load the Initialization File). Just as in Exercise 
1, we will first open the trace file

 

TF 

 

trace2.trc 

 

<RETURN>

 

Then, we will trace the next fourteen instructions.  Note that if  the number of 
instructions to be traced is not specified, the trace will continue until a key is 
pressed.  

 

TC 

 

E

 

 <RETURN> 

Exercise 1: Trace the instructions between two labels, call_m and main, and print 
the instructions to a file. 

Exercise 2: Trace fourteen instructions (0x0E instructions) and write the trace to 
the file TRACE2.trc.

Note:

 

If you had specified  the number of instructions to be executed as 
“14” instead of  “E”, twenty steps would have been executed since 
the radix is set to hexadecimal (the default radix in MPSIM).



 

MPSIM USER’S GUIDE

 

DS30027I - page 24

 



 

 1995 Microchip Technology Inc.

 

Figure 3.5 –The trace information is printed to both the 
screen and the trace file.

DX <RETURN>

 

The current trace parameters display in the command entry area of the 
MPSIM screen.

 

Exercise 3: Check the current trace criteria.



 



 

 1995 Microchip Technology Inc. DS30027I - page 25

 

Chapter 3. Tutorial

Set Up Breakpoints

 

Break points are used to artificially stop program execution so that you can 
review how the data has been manipulated or to see the contents of the 
Special Function Registers.  There are three instructions that deal with 
breakpoints:

•

 

DB

 

displays all of the breakpoints currently set.

•

 

BC

 

 clears one or all of the breakpoints currently set.

•

 

B

 

 sets a break point.

 

BC

B

 

 

 

mpy_S

 

<RETURN>

DB<RETURN>

BC

 

 

 

mpy_S

 

<RETURN>

Exercise 1: Initialize the breakpoints by clearing any break points currently set.  
Enter the following command:

Exercise 2: Set a breakpoint at MPY_S.  Enter the following command:

Exercise 3: Review all the breakpoints.  Enter the following command:

Exercise 4: Delete the breakpoint at MPY_S.  Enter the following command:



 

MPSIM USER’S GUIDE

 

DS30027I - page 26

 



 

 1995 Microchip Technology Inc.

 

Execute the Hex Code

 

In addition to trace, there are three instructions that you can use  to execute 
your code. 

 

E

SS

C

 

•

 

E

 

 executes your code until it encounters a breakpoint or you press a 
key.

•

 

SS

 

 single-steps through your instructions.  That is, it executes one 
single instruction at the CPC.

•

 

C

 

 Execute, ignoring “n” number of breakpoints.

 

AD W <RETURN>

b main

b mpy_S

E <RETURN>

 

MPSIM executes until it encounters the first breakpoint or until a key is 
pressed.  Watch the values change in the W, mulplr, H-Byte, and L-Byte 
registers.  

 

SS <RETURN>

 

The SS instruction causes MPSIM to execute the instruction at the PC.    
Pressing <RETURN> at the MPSIM prompt re-executes the last command.  
Execute a second instruction by pressing <RETURN> again. Do this several 
times, watching how the values in the W, mulplr, H-Byte, registers change.  
This  command can be used to single-step through your entire program to see 
the data values at each step, and to watch the flow of your program.   If you 
supply an address with the SS command, MPSIM will modify the CPC to the 
address you specify and then will execute the instruction at that address.  
Remember that pressing <RETURN> will cause MPSIM to re-execute the 
same command, so that if  you supplied an address with the command, the 
same address will be executed.

 

C 

 

2

 

 <RETURN>

 

MPSIM executes the instruction at the current CPC until the instruction 
immediately following the second break point.  Watch the values change in the 
W, mulplr, H-Byte, and L-Byte registers. 

 

Exercise 1: Add a watch variable. Add the w register to the display.

Exercise 2: Add two breakpoints and execute until the first breakpoint is 
encountered.

Exercise 3: Execute instructions one step at a time.

Exercise 4: Execute your program and break after the second breakpoint.



 



 

 1995 Microchip Technology Inc. DS30027I - page 27

 

Chapter 3. Tutorial

Modify the Hex Code

 

MPSIM has four types of  commands which allow you to modify the hex code:  
search commands locate code that match specified criteria, display/modify 
commands automatically display specified code and allow you to change it, 
delete commands eliminate specified code, output commands allow the 
modified code to be saved to a file. For the following exercises, mulplr is 
stored in file register F10.  

 

SF 

 

0, 1FF, F10 

 

<RETURN>

 

You will see two code lines with the "mulplr" register label.

 

F 

 

F10

 

 <RETURN>

 

After you type in the above command, you will see the current contents of 
register F10, followed by a colon.  Type in the value 0xFF, and watch the 
contents of the file register change.  You will see that the contents of “mulplr” 
will change since the value of “mulplr” is 0x10.

 

W <RETURN>

 

Just as in Exercise 1, you will see the current contents of W displayed on the 
screen, followed by a colon.  Type in 0x0C, and watch the contents of the W 
register change.

Type in the following:

 

M 0 <RETURN>

 

You will see the contents of program memory displayed in hexadecimal, 
followed by a colon.  Type in a 0 (object code for NOP), and then  <RETURN>.  
Unlike modifying file registers, you will not immediately exit the function.  
Instead, you will see the contents of the next memory location followed by a 
colon.  You can continue modifying program memory until you are finished.  
When you are done, type  “Q”.  This will get you back to the MPSIM command 
prompt (%).

Type in the following command:

 

DE 

 

2,4

 

 <RETURN>

 

This function will delete all program memory from address 2 through 
address 4, and  will shift up remaining program memory.  If you would like to 
only clear the program memory between two addresses, use the following 
command:

 

ZM 2,4 <RETURN>

Exercise 1: Search for the next occurrence of F10, and change its contents to 0xFF.

Exercise 2: Change the value of the W register to 0x0C

Exercise 3: Change the contents of program memory located at the PC to a NOP.

Exercise 4: Delete program memory between address 2 and 4.



 

MPSIM USER’S GUIDE

 

DS30027I - page 28

 



 

 1995 Microchip Technology Inc.

 

All of program memory between addresses 2 and 4 will now contain zeros 
(NOP instructions).  It will essentially leave a “hole” in program memory. Use 
the following command to view your changes:

 

DI 0 <RETURN>

 

Remove the modifications made to program memory from the object code in 
memory.

 

ZP <RETURN>

 

This instruction clears the patch table.  All of the modifications made to 
SAMPLE.HEX program memory are removed.

 

Exit the MPSIM Session

 

There are two ways of exiting MPSIM:

AB <RETURN>

Q <RETURN> 

Using the AB command causes the old journal file to remain the same.  The Q 
command overwrites the old journal file.

You have now been introduced to some of the most commonly-used functions 
in the simulator, and should  have an understanding of how to use them.  If 
you need any additional information about any of the files that the simulator 
uses or generates, please review the information in Chapter 2.  Chapter 5 
provides a list of all the commands that are available in MPSIM, complete with 
a detailed description of their functions and syntax.  

Exercise 5: Remove the modifications made to program memory from the object 
code in memory.



 



 

 1995 Microchip Technology Inc. DS30027I - page 29

 

Chapter 4.   Functional Categories of MPSIM Commands

 

Introduction

 

Chapter 4 is intended to be used as a quick way to help locate a MPSIM 
command by function. All of the commands presented in this chapter have 
been grouped together according to function instead of alphabetical order. 
Once the desired command is found, it can be looked up in Chapter 5 
“MPSIM Simulator Commands” if a more detailed explanation or example 
is required. 

 

Highlights

 

All commands have been divided into the following categories:

• Loading and Saving

• Inspecting and Modifying

– Program Memory
– Registers
– Display Functions
– Patch Table
– Clearing Memory and Registers
– Searching Memory
– Symbol Table
– Restore

• Execute and Trace

– Execution Instructions
– Tracing Execution
– Breakpoints

• View Screen

• Miscellaneous Commands 

• MPSIM Commands

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 30

 



 

 1995 Microchip Technology Inc.

 

Loading and Saving

 

The following three commands load and save hex code and listing files.

Before simulation can begin, use LO to load an hex file into program memory. 
Immediately after loading the object file, MPSIM tries to load the listing file 
using the same filename and the extension .LST. If MPSIM still can’t find the 
listing file, the source code file cannot be loaded and displayed at break 
points. Instead, MPSIM disassembles the hex code and displays the 
disassembled instruction.

The object file can be any of two different formats: INHX85 or INHX8M.

After modifications have been made to the program memory, the user may 
wish to save the corrected hex code into an external file. Use the O command 
to output the hex code. Enter the filename including the extension.

 

Inspecting And Modifying

 

MPSIM allows user to change the values of any data area or program 
memory any time during the simulation.

 

Program Memory

 

In the course of testing a program, you may need to modify its instructions. 
Both the following commands do so.

 

LO 

 

filename format

 

Load file

 

 

 

filename

 

 

 

with

 

 format

 

 into program 
memory. MPSIM also loads the source file.

 

LS 

 

filename

 

 Load 

 

filename

 

 into internal symbol table.

 

O

 

 filename format

 

Write modified hex code to 

 

filename

 

.

 

Example: LO

 

 

 

SAMPLE.OBJ

 

 

 

INHX8M

 

<RETURN>

Example: O 

 

SAMPLE1.HEX

 

 

 

INHX8S

 

<RETURN> 

A

 

 address

 

Display/modify program memory at address using 
symbolic format.

 

M 

 

address

 

Display/modify program memory at address using 
the current radix format.



 



 

 1995 Microchip Technology Inc. DS30027I - page 31

 

Chapter 4. Functional Categories of MPSIM Commands

 

If you use 

 

IA

 

, the source code for the address displays, followed by ‘:’ on the 
next line for the new command. The new command must consist of a valid 
mnemonic followed by zero or more operands. Each operand must contain a 
single value or symbol, no expressions will be allowed. MPSIM interprets all 
values based on the current input radix as set with the 

 

SR

 

 command.

Entering ‘

 

Q

 

’ at the prompt ends the command; entering ‘-’ causes MPSIM to 
go back and inspect/modify the previous address; entering 

 

<RETURN> 

 

leaves the instruction alone and continues to the next address.

After changing the hex code, the original source code no longer displays. It is 
replaced by a disassembled source line.

If you use 

 

M

 

, the contents of the address display in the same format as the 
current radix. The prompt ‘:’ immediately follows the data. Place the new 
value after the prompt, using the current radix.

The 

 

‘-’

 

, 

 

‘Q’

 

 and 

 

<RETURN>

 

 have the same affect as described above. Two 
additional commands that affect program memory are:

The 

 

IN

 

 command places a symbolically formatted opcode at the given 
address, then displaces values that follow 

 

address

 

 by one location. The new 
command must consist of a valid mnemonic followed by zero or more 
operands. Each operand must contain a single value or symbol, no 
expressions will be allowed.

The 

 

DE 

 

command deletes the code within the given boundaries then shifts all 
data in program memory locations greater than the upper boundary down to 
the lower boundary.

 

Example: %IA

 

 

 

200

 

 <RETURN>

 

0200 : CLRF F5

: CLRF 6

0201 : CLRF F7

: –

0200 : CLRF 6

: Q

 

IN 

 

address

 

,

 

instruction

 

Insert 

 

instruction

 

 at 

 

address

 

 in symbolic 
format.

 

DE 

 

address1,address2

 

Delete program memory from 

 

address1

 

 to    

 

address2

 

.



 

MPSIM USER’S GUIDE

 

DS30027I - page 32

 



 

 1995 Microchip Technology Inc.

 

Registers

 

Each register can be inspected/modified by using the following commands:

Inspect and modify file registers with the 

 

F

 

 command. The value of the 
register displays followed by the prompt 

 

‘:’

 

. Enter the new value after this 
prompt.

To inspect and modify the W register the W command is used.

Inspect and modify the simulated cycle time with the SC command.

Display and/or modify the value of any other data area (stack, pins, status bits, 
all registers) with the 

 

SE

 

 command.

 

F 

 

register

 

Display/modify contents of file 

 

register

 

W

 

Display/modify contents of 

 

W

 

 register

 

SC

 

Display/modify processor cycle time

 

SE 

 

data_area

 

Display/modify any 

 

data_area

 

RE

 

Reset elapsed time and step count

 

Example:

 

%

 

F 3

 

F3=20:

 

21

 

 (The value of F3 has now been 
changed to 21.)

 

Example:

 

%

 

W

 

W=44:

 

00

 

 (The value of 

 

W

 

 has now been changed 
to 0.)

 

Example:

 

%

 

SC

 

2.0:.

 

2

 

Example:

 

%

 

SE 

 

OPT

 

OPT=FF:

 

FE



 



 

 1995 Microchip Technology Inc. DS30027I - page 33

 

Chapter 4. Functional Categories of MPSIM Commands

 

Display Functions

 

The display functions are provided to print formatted lists of various program 
variables in the command/source area on the screen.

You can terminate the 

 

DM

 

 and 

 

DI

 

 commands at any time by pressing any key.

 

DR

 

Displays the contents of all registers including W, 
status and the stack.

 

DM 

 

addr1,addr2

 

Displays the code from 

 

address1

 

 to 

 

address2

 

. 
The code displays only in the current radix, not in 
mnemonics. 

 

address1

 

 must be less than 

 

address2

 

 and both must be in the valid range of 
program memory.

 

DI 

 

addr1,addr2

 

Displays the code from 

 

address1

 

 to 

 

address2.

 

 
The code displays in both the current radix and 
mnemonics. 

 

address1

 

 must be less then 

 

address2

 

 and both must be in the valid range of 
program memory.

 

Example: %DI

 

 

 

0, 3

 

0000 0020  MOVWF 0

 

The MOVWF instruction = 20

 

0001 0063  CLRF 3

 

The CLRF instruction = 63

 

0002 0080  SUBWF 0,0

 

The SUBWF instruction = 80

 

0003 0069  CLRF 9

 

The CLRF instruction = 69

 

%DM 0, 3

0000 0020

0001 0063

0002 0080

0003 0069



MPSIM USER’S GUIDE

DS30027I - page 34   1995 Microchip Technology Inc.

Patch Table
During the course of simulation, several changes may have been made to the 
hex code in order to achieve the desired results. The patch table keeps track 
of all changes made by maintaining the original value of the address along 
with the most recent change. The patch table can then be displayed out in 
symbolic format to aid the user in making changes to the source code. The 
following three commands manipulate the patch-table.

Clearing Memory and Registers
Memory and registers can be cleared quickly by using the following 
commands.

Clear any of the other data areas with the SE command.

Searching Memory
It is sometimes desirable to search the program memory for specific 
instructions or operands. The following three commands search program 
memory for various patterns and display each line containing that pattern.

SI address1,address2,instruction

Search program memory from address1 to address2 for any occurrence of 
instruction. Instruction is in mnemonic format.

SM address1,address2,m

Search program memory from address1 to address2 for any occurrence of 
the value m. Specify the search criteria in the radix mode, not in mnemonics.

ZP Clears the patch table and resets it to no patches made. 
All changes previously made to the hex code remain.

DP Display all patches in symbolic format. Both the original 
hex code and new code display.

RP Restores all patches to their original value and clears 
the patch table

ZM addr1,addr2 Zero the program memory from address1 to address2. 
address1 must less than address2 and both must be 
valid program memory addresses.

ZR Zero all of the file registers (F0 through F31).

ZT Zero the elapsed time counter.



  1995 Microchip Technology Inc. DS30027I - page 35

Chapter 4. Functional Categories of MPSIM Commands

SF address1,address2,register

Search program memory from address1 to address2 for any instruction that 
accesses file register. Specify the search criteria in the radix mode, not in 
mnemonics.

Symbol Table
The following commands manipulate the symbol table:

Restore
The Restore All command, RA, has the combined effect of restoring the patch 
table, clearing the symbol table and removing all break points.

Example:

%SI 0, 20, NOP

0000 0000  LOOP  NOP

0006 0000        NOP

001E 0000        NOP

%SM 0, 20, 0

0000 0000

0006 0000

001E 0000

DS Display symbol table.

DL symbol Delete symbol from symbol table.

GS symbol,value,type Generate symbol with a value of type.  type may 
be file, bit(file), label or literal. See the GS 
command description for the exact syntax.

Example:

%DS

Symbol Value Type

START 0000    L

%GS NEWSYM, 
FF, B

Symbol Value Type

START 0000    L

NEWSYM 00FF    B



MPSIM USER’S GUIDE

DS30027I - page 36   1995 Microchip Technology Inc.

Execute and Trace
The simulator executes in three basic modes, execute until break, single step 
or trace. In either of these modes you can stop execution at any time by 
pressing any key.

Execution Instructions
The E command begins execution at the specified address, or at the CPC if 
you don’t specify an address. The loaded program executes until reaching a 
break point or until you press any key. If you wish to slow down execution, use 
the single step instruction, SS. SS executes the single instruction at the 
specified address or at the CPC if you don’t specify an address.

Tracing Execution
In the trace mode, all addresses meeting certain conditions display as they 
execute. The conditions may include:

• A given instruction within address boundaries.

• Accessing a given register.

• A given register containing a value between two limits. The following 
trace parameters maintain trace execution.

• Register number being traced.

• Range of register values.

• Range of addresses to trace.

The following commands set up and execute the trace mode.

TC #instructions Trace the next #instructions. If you omit 
#instructions, execution continues until MPSIM 
encounters a break point or until you press any 
key.

TA Sets the upper and lower address trace limits to 
the full range of program memory.

TA addr1,addr2 Sets the lower validation limit for address trace to 
address1 and the upper address validation limit 
to address2.

TR Sets the address trace to trace any file register.

TR reg Sets the address trace to trace the file register.

TR reg,min_val,max_val Sets the address trace to trace the file register 
only if the value of the register is between 
min_value and max_value.



  1995 Microchip Technology Inc. DS30027I - page 37

Chapter 4. Functional Categories of MPSIM Commands

Stack contents always display in brackets with the top of the stack to the left.

DX Displays the current trace parameters. When in 
trace mode, the location, opcode, mnemonic, 
elapsed time, cycle steps and any changed data 
areas will be displayed when the given conditions 
are met.

Note: F2 and F3 won’t display if changed, however, 
status bits do display.

Examples:

%DX

Address 0000:01FF

%TC 2

0002 0000 LOOP  NOP  |  6.00u 0003 |

0003 0040 TEST  CLRW | 8.00u 0004 | Z:1

%TR 4, 0, F

%TR 3

%TA 0, 4

%DX

Address   0000:0004

F3        0000:01FF

F4        0000:000F

%TC 40

0004 0020  CALL  START   | 10.00u 0005| [005,000]



MPSIM USER’S GUIDE

DS30027I - page 38   1995 Microchip Technology Inc.

Breakpoints
MPSIM allows the user to set up to 512 breakpoints on any valid address. It 
also allows conditional breakpoints on any of the data areas. When one of 
these breakpoints is encountered, the current address is displayed in 
symbolic format and control is returned to the user. The following commands 
control the breakpoints.

Only one conditional breakpoint is allowed per data area.

B address Set breakpoint at address (symbolic address can 
be used).

B data_area op val Break when data_area matches the condition 
given by the operator (=,>,<,>=,<=,!=) and value.

BC address Cancel breakpoint at address.

BC data_area Cancel breakpoint involving data_area.

BC Cancel all breakpoints.

C #breakpoints Continue execution ignoring #breakpoints 
breakpoint occurrences.

DB Display all active breakpoints.



  1995 Microchip Technology Inc. DS30027I - page 39

Chapter 4. Functional Categories of MPSIM Commands

View Screen
The following commands set up and manipulate the view screen.

V data_area,radix,#digits This command sets up the view screen. This 
means that the View command defines the 
variables (and respective formats) to 
constantly display on the screen. Once the 
view screen is set, it remains active until 
either a NOVIEW command or a View sets up 
a new view screen. The format of this 
command is relatively simple. Register or 
signal s displays in radix mode r with n digits. 
r defaults to hexadecimal and n defaults to 1. 
If n is omitted, the number of digits is 1. The 
radix can be binary, octal, hexadecimal or 
decimal.

NV This command clears the view screen. The 
same effect can be achieved by redefining 
the view screen.

AD data_area,radix,#digits This command adds items to the view 
screen. If one desires to add more display 
items to the view screen, use the Add 
command. While this command’s format is 
identical to View, it doesn’t destroy the 
current contents of the view screen, but 
simply displays additional items as well as 
the current ones.

DV data_area This command simply removes display items 
from the view screen while leaving the 
display formatting intact.

TY data_area,radix,#digits This command changes the formatting of the 
existing view screen. s is the signal name (if 
the designated signal isn’t in the view screen, 
MPSIM gives a warning). The radix can be x, 
o, d or b and n is the number of spaces to 
reserve for this variable at the display time.



MPSIM USER’S GUIDE

DS30027I - page 40   1995 Microchip Technology Inc.

Miscellaneous Commands

SR radix This command sets the input/output radix to 
Octal, hexadecimal or Decimal. The radix will be 
used on all inputs and outputs with the exception 
of file register numbers and step counts.

P {54|55|71|...} Choose the appropriate PIC16CXX 
Microcontroller number n.  n can be any member 
of the PIC16CXX or PIC16C5X microcontroller 
family. The default is 55.

GE filename This command forces MPSIM to get its command 
stream from an external text file. When end of file 
is reached, the control is returned to the user 
interface. All the incoming commands are parsed 
by the same mechanism as the one supervising 
the on-line interface thus the syntax should follow 
the guidelines of this document. If the specified 
file is not found, the user will be notified.

Q This command terminates the dialogue. It prints 
out one or two summary messages, removes the 
journal file and exits to the operating system.

AB This command aborts the dialogue. It prints out 
one or two summary messages and exits to the 
operating system. 

ST filename Stimulus command allows the user to introduce 
an event-based stimulus injection into the model. 
That is, the user may want to inject certain values 
into certain pins or registers at some point during 
the simulation. The stimuli are defined in a text file 
whose format is described on pages 12 and 13.

H The Help command lists the syntax and a brief 
summary of each command available in MPSIM. 
There are several screens of information. Press 
SPACEBAR to exit, any other key to display the 
next screen.

CK pin, high, low This command allows you to assign a clock to 
an   I/O pin.

DK altfxkey, pin, event This command simulates an asynchronous event 
through a function keystroke, and is very useful 
for simulating external interrupts or resets.

FI FileNameAddr, PmemAddr, n 

This command injects values into a file register 
when the PC = PmemAddr. Repeats n times.



  1995 Microchip Technology Inc. DS30027I - page 41

Chapter 4. Functional Categories of MPSIM Commands

MPSIM Commands
The following table contains summary information grouped by function about 
the MPSIM commands. This information is also found on the MPSIM Quick 
Reference Card. Chapter 5 contains additional information about the MPSIM 
commands. 

Table 4.1 MPSIM Commands by Function  

MPSIM Conventions

[   ] Brackets indicate optional items.

{   } Braces indicate group options. One or more options in the 
group is required.

 |  Vertical bar indicates alternative options.

System Navigation

AB Abort Session. Aborts the dialogue, prints a summary 
message and exits to the operating system. AB does not 
overwrite the journal file.

H|Help|? Help. The Help Command lists the syntax and gives a brief 
summary of each command available in MPSIM. Press the 
SPACEBAR to exit Help. Press any other key to display the 
next help screen.

Q Quit. Terminates the dialog. Prints one or two summary 
messages, overwrites the old journal file and exits to the 
opening system.

Program Memory

DE address1,address2 Delete Program Memory from address1 to address2.

DI [address1[,address2]] Display Program Memory in Symbolic Format. Displays 
program memory from address1 to address2. Displays in 
current radix and symbolic format. Omit address2 to display 
next 10 lines from address1.

DM [address1,address2] Display Program Memory in Radix Designated Format. (See 
SR command to set the radix.) Displays program memory from 
address1 to address2. Data displays in current radix only. With 
no parameter, displays 10 lines continuing from last DM 
display.

FM address1,address2,pattern Fill Memory. Fills program memory from address1 to address2 
with specified HEX pattern.

IA address Insert/Inspect Assembly Code (Symbolic Format). Displays or 
modifies program memory at address using symbolic format.



MPSIM USER’S GUIDE

DS30027I - page 42   1995 Microchip Technology Inc.

IN address,instruction Insert instruction. Inserts instruction at address in symbolic 
format.

LO filename[format] Load Object File. Loads the object file, filename, with format 
into program memory. MPSIM also loads the listing file and 
symbol file.
Valid Formats: INHX8M  (Default)

INHX8S

M address Display/Modify Program Memory at Address. The contents at 
the address display, and a colon (:) prompt follows. To change 
the value at address, enter a new value (in the current radix) 
after the prompt.
Q End the command
– Cause MPSIM to go back to the previous address
<Enter↵ > Continue to the next address

O filename [format] Output Modified Object Code. Writes contents of program 
memory, including modifications, to the specified file in the 
designated format.
Valid Formats: INHX8M  (Default)

INHX8S
INHX32 (for PIC17CXX)

SF address1,address2,register Search Program Memory for Register. Searches program 
memory from address1 to address2 for any instruction that 
accesses the specified file register.

SI addr1,addr2,instruction Search Program Memory in Symbolic Format from address1 to 
address2 for any occurrence of instruction.

SM addr1,addr2,instruction Designated Format. (See SR command to set the radix.) 
Searches program memory from address1 to address2 for any 
occurrence of instruction. Specify instruction in the current 
radix.

ZM address1,address2  Zero the Program Memory from address1 to address2.

Breakpoints

B address Set Breakpoint. Sets breakpoint at address (symbolic address 
can be used).

B FileReg {operator value} Set Breakpoint. Break when FileReg matches the condition 
given by the operator and the value.
Valid operators: { = | > | < | > = | < = | ! = }

BC Breakpoint Clear. Cancels all breakpoints.

BC [addr|FileReg] Breakpoint Clear. Cancels breakpoint at addr or FileReg.

DB Display All Active Breakpoints.

Table 4.1 MPSIM Commands by Function  (Continued)



  1995 Microchip Technology Inc. DS30027I - page 43

Chapter 4. Functional Categories of MPSIM Commands

Execution Instructions

C [#breakpoints] Continue Executing. Continue execution ignoring #breakpoints 
encountered.

E [address] Execute Program. Begins execution at the specified address, 
or at the current PC if address is omitted. The loaded program 
executes until reaching a breakpoint or until you press any key.

GO Reset and Execute. Resets the microcontroller, initializes all 
registers and executes from the start.

RS Reset Chip. Simulates a power-on reset.

SS [address] Execute a Single Step. Executes a single instruction at the 
specified address or at the current PC if address is omitted.

To single step through multiple instructions, enter SS once and 
press <Enter↵ > at the % prompt. Then continue pressing 
<Enter↵ >.

Tracing

DX Display Current Trace Parameters. Displays the current trace 
parameters. In trace mode, the location, opcode, mnemonic, 
elapsed time, cycle steps, and changed file registers display 
when the given conditions are met.

TA [address1,address2] Trace Address. Sets the lower validation limit for address trace 
to address1 and the upper address validation limit to address2. 
With no arguments, MPSIM uses the full range of program 
memory.

TC [#instructions] Trace Instructions. Trace the next  #instructions. If you omit 
#instructions, execution continues until MPSIM encounters a 
breakpoint or until you press any key.

TF [filename|PRN] Trace to File/Printer. Open/Close trace output file or write trace 
to printer. With no argument, TF closes file.

TR register [,min_val,max_val] Trace Register. Sets the file register trace.
With no arguments, traces any file register. To perform trace 
only when register value lies between min_val and max_val, 
specify the min_val and max_val.

Registers and Data Memory

DR Display Registers. Displays the contents of special function 
registers including W, status, flags, and the stack.

EE address Modify EE Memory. Modifies memory at the specified address 
on microcontrollers with EEPROM data memory.

Table 4.1 MPSIM Commands by Function  (Continued)



MPSIM USER’S GUIDE

DS30027I - page 44   1995 Microchip Technology Inc.

F FileReg File Register Display/Modify. Displays or modifies the contents 
of any FileReg (by absolute address or symbolic name).

IR {ALL | RAM SFR} Initialize with Random Values. Loads random values into 
registers. 

LR [filename] Load Registers. Loads contents of registers with data from a 
DOS text file. 

SE [I/O_pin | port] Display/Modify I/O Pin. Displays or modifies an I/O_pin or port.

UR {ALL|RAM|SFR}[filename] Upload Registers. Uploads contents of registers into a DOS 
text file. 

W Work Register Display/Modify. Displays/modifies the contents 
of the W register.

ZR Zero the Registers. Zeros all file registers.

Stimulus and Timer

CK [pin,{#hi,#low|–} Clock. Assigns a clock to specified I/O pin.                       

No Argument
pin,#hi,#low
pin,–

Displays current clock assignment.
Defines clock period on pin.
Disables clock on specified pin.

DK [AltFxkey#,[pin,event]|[–]] Define Key. Assigns asynchronous event to an Alt function key.

No Argument:
AltFxkey# 

 AltFxkey#–
– 
event = H,L,T,P

Displays assignment of all function keys
Displays assignment of specified function 
key        
Cancels specified function. 
The dash cancels all assignments.
High, Low, Toggle, Pulse

DW [E|D] Enable/Disable Watchdog Timer.
E = Enable     D = Disable
With no parameters, displays WDT state.

FI {filename,addr,FileReg[,n]|–} File Input. Inserts the next value from filename into file register 
when current PC=addr. Repeats n times.

IP [time|step] Injection Point. Injects a stimulus according to the time or step 
count. With no parameters, displays current mode.

RE Reset Elapsed Time and Step Count.

SC [cyclelength] Display/Set Processor Cycle Time. Displays or modifies the 
microcontroller’s simulated cycle time.

ST filename Read Stimulus File. Loads stimulus file.

Table 4.1 MPSIM Commands by Function  (Continued)



  1995 Microchip Technology Inc. DS30027I - page 45

Chapter 4. Functional Categories of MPSIM Commands

Verbose [ON|OFF] Echo to View Screen. Prints a line to the view screen (and to 
the optional trace file) when a stimulus is injected into a pin. 
The command, without an argument, displays the current 
setting.

WP {1 |...| 128} Watchdog Timer Period. Sets watchdog timer time-out period 
in ms. With no parameters, displays current setting. Check the 
device AC characteristics table for typical twdt ranges.      

ZT Zero the Elapsed Time Counter.

Program Memory Patch Control

DP Display All Patches. Displays all patches in symbolic format. 
Both the original object code and new code are shown.

RA Restore All. Restores patch table, clears symbol table and 
removes all breakpoints.

RP Restore Patches. Restores all patches to original value and 
clears the patch table.

ZP Zero the Patch Table. Clears patch table and resets to no 
patches made. Changes made to the object code are 
unaffected, and object code cannot be restored to the original.

Symbol Table

DL symbol Delete Symbol from Symbol Table. Removes specified symbol 
from the symbol table.

DS Display Symbol Table.

GS symbol, value, type Generate Symbol. Generates a symbol with the value and type 
specified.
type: F – File Register

B – Bit

L – Label

K – Literal

View Screen

LS filename Load Symbol File. Load filename into internal symbol table.

AD FileReg[,radix[,#digits]] Add Item to View Screen. Use the AD command to add a 
display item to the view screen.
The format of this command is identical to the V (View Screen) 
command. The AD command does not destroy the current 
contents of the view screen.

DV FileReg Delete View Screen Item. Removes display items from the 
view screen, leaving the display formatting intact.

Table 4.1 MPSIM Commands by Function  (Continued)



MPSIM USER’S GUIDE

DS30027I - page 46   1995 Microchip Technology Inc.

NV No View Screen. Clear the view screen. The same effect can 
be achieved by redefining the view screen with V command.

TY FileReg,radix,#digits Change View Screen. Change the formatting of the existing 
view screen. (If the designated signal isn’t in the view screen, 
MPSIM gives a warning.) The radix can be x, o, d, or b. #digits 
is the number of spaces to reserve for this variable at display 
time.

V FileReg[,radix[,#digits]] View Screen. Sets up the view screen. Once set, the view 
screen remains active until either a NV command or a V 
command sets up a new view screen. FileReg displays in radix 
mode with #digits. Radix defaults to hexadecimal and #digits to 
1. The radix can be hexadecimal, octal, decimal or binary (x, o, 
d, or b).

System Setup and Control

EL {0 | 1 | 2} Error Level. Sets current error level.

0 =
1 =
2 =

Display All Messages
Display Warnings & Errors Only
Display Error Messages Only

Enter EL with no parameters to display current level.

FW {MC|EM|MP|RC256|RC64|RC|OSC} Fuse Word. Select microcontroller, extended microcontroller, or 
microprocessor operating mode, and set the watchdog timer 
fuse for the PIC17CXX simulator. Type FW with no parameters 
to display current modes. 

GE filename Get Commands from an External file. Forces MPSIM to read 
and perform the MPSIM commands in the named ASCII 
external file. Upon reaching the end of file, control returns to 
the user.

LJ Load and Execute Journal File.

P device# Select Microcontroller. Choose the appropriate microcontroller 
device#. The default is 55 which represents PIC16C55.
device# = XX where xx is a device suffix.

SR {0|x|D} Set Radix. Sets the input/output radix to octal, hexadecimal, 
or decimal. The radix will be used on all inputs and outputs 
with the exception of step counts.

Table 4.1 MPSIM Commands by Function  (Continued)



 



 

 1995 Microchip Technology Inc. DS30027I - page 47

 

Chapter 5.   MPSIM Commands

 

Introduction

 

The following table gives an alphabetic summary of the commands currently 
available with MPSIM. Detail descriptions of each command follow the 
alphabetic summary. 

Press 

 

<RETURN>

 

 at the % prompt to re-execute the last command entered. 
Thus you can use commands such as SS more easily.

 

Alphabetic Summary of MPSIM Commands

 

Alphabetic Summary of MPSIM Commands

 

[ ]

 

Brackets indicate optional items.

 

{ }

 

Braces indicate group options. One or more options in 
the group is required.

 

 |  

 

Vertical bar indicates alternative options.

 

AB

 

Abort Session. Aborts the dialogue, prints a summary 
message and exits to the operating system. AB does not 
overwrite the journal file.

 

AD 

 

FileReg[,radix[,#digits]]

 

Add Item to View Screen. Use the AD command to add a 
display item to the view screen.

The format of this command is identical to the V (View 
Screen) command. The AD command does not destroy 
the current contents of the view screen.

 

B 

 

address

 

Set Breakpoint. Sets beekeeping at address (symbolic 
address can be used).

 

B 

 

FileReg {operator value}

 

Set Breakpoint. Break when 

 

FileReg

 

 matches the 
condition given by the 

 

operator

 

 and the 

 

value

 

.

Valid operators: { = | > | < | > = | < = | ! = }

 

BC

 

Breakpoint Clear. Cancels all breakpoints.

 

BC 

 

[addr|FileReg]

 

Breakpoint Clear. Cancels breakpoint at 

 

addr

 

 or 

 

FileReg

 

.

 

C 

 

[#breakpoints]

 

Continue Executing. Continue execution ignoring 

 

#breakpoints

 

 encountered.

 

CK 

 

[pin,{#hi,#low|–}

 

Clock. Assigns a clock to specified I/O pin.

No Argument Displays current clock assignment.

 

pin,#hi,#low

 

Defines clock period on pin.

 

pin,–

 

Disables clock on specified pin.

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 48

 



 

 1995 Microchip Technology Inc.

 

Alphabetic Summary of MPSIM Commands (Continued)

 

DB

 

Display All Active Breakpoints.

 

DE 

 

address1,address2

 

Delete Program Memory from 

 

address1

 

 to 

 

address2

 

.

 

DI 

 

[address1[,address2]]

 

Display Program Memory in Symbolic Format. Displays 
program memory from 

 

address1

 

 to 

 

address2

 

. Displays 
in current radix and symbolic format. Omit 

 

address2

 

 to 
display next 10 lines from 

 

address1

 

.

 

DK 

 

[AltFxkey#,[pin,event]|[–]]

 

Define Key. Assigns asynchronous event to an Alt 
function key.

No Argument: Displays assignment of all function 
keys.

 

AltFxkey#

 

Displays assignment of specified       
function key.

 

AltFxkey#–

 

Cancels specified function.

– The dash cancels all assignments.

 

event = H,L,T,P

 

High, Low, Toggle, Pulse

 

DL 

 

symbol

 

Delete Symbol from Symbol Table. Removes specified 

 

symbol

 

 from the symbol table.

 

DM 

 

[address1,address2]

 

Display Program Memory in Radix Designated Format. 
(See SR command to set the radix.) Displays program 
memory from 

 

address1

 

 to 

 

address2

 

. Data displays in 
current radix only. With no parameter, displays 10 lines 
continuing from last DM display.

 

DP

 

Display All Patches. Displays all patches in symbolic 
format. Both the original object code and new code are 
shown.

 

DR

 

Display Registers. Displays the contents of special 
function registers including W, status, flags, and the 
stack

 

DS

 

Display Symbol Table.

 

DV FileReg

 

Delete View Screen Item. Removes display items from 
the view screen, leaving the display formatting intact.

 

DW [E|D]

 

Enable/Disable Watchdog Timer.

E = Enable     D = Disable

With no parameters, displays WDT state.



 



 

 1995 Microchip Technology Inc. DS30027I - page 49

 

Chapter 5. MPSIM Commands

 

Alphabetic Summary of MPSIM Commands (Continued)

 

DX

 

Display Current Trace Parameters. Displays the current 
trace parameters. In trace mode, the location, opcode, 
mnemonic, elapsed time, cycle steps, and changed file 
registers display when the given conditions are met.

 

E 

 

[address]

 

Execute Program. Begins execution at the specified 

 

address

 

, or at the current PC if 

 

address

 

 is omitted. The 
loaded program executes until reaching a breakpoint or 
until you press any key.

 

EE 

 

address

 

Modify EE Memory. Modifies memory at the specified 

 

address 

 

on microcontrollers with EEPROM data 
memory.

 

EL {0 | 1 | 2}

 

Error Level. Sets current error level.

0 = Display All Messages

1 = Display Warnings & Errors Only

2 = Display Error Messages Only

Enter EL with no parameters to display current level.

 

F 

 

FileReg

 

File Register Display/Modify. Displays or modifies the 
contents of any 

 

FileReg

 

 (by absolute address or 
symbolic name).

 

FI 

 

{filename,addr,FileReg[,n]|–}

 

File Input. Inserts the next value from 

 

filename

 

 into file 
register when current PC=

 

addr

 

. Repeats n times.

 

FM 

 

address1,address2,pattern

 

Fill Memory. Fills program memory from 

 

address1

 

 to 

 

address2

 

 with specified HEX pattern.

 

FW 

 

{MC|EM|MP|RC256|RC64|RC|OSC} Fuse Word. Select microcontroller, extended 
microcontroller, or microprocessor operating mode, and 
set the watchdog timer fuse for the PIC17CXX simulator. 
Type FW with no parameters to display current modes. 

GE filename Get Commands from an External file. Forces MPSIM to 
read and perform the MPSIM commands in the named 
ASCII external file. Upon reaching the end of file, control 
returns to the user.

GO Reset and Execute. Resets the microcontroller, 
initializes all registers and executes from the start.



MPSIM USER’S GUIDE

DS30027I - page 50   1995 Microchip Technology Inc.

Alphabetic Summary of MPSIM Commands (Continued)

GS symbol, value, type Generate Symbol. Generates a symbol with the value 
and type specified.

type: F – File Register

B – Bit

L – Label

K – Literal

H|Help|? Help. The Help Command lists the syntax and gives a 
brief summary of each command available in MPSIM. 
Press the SPACEBAR to exit Help. Press any other key 
to display the next help screen.

IA address Insert/Inspect Assembly Code (Symbolic Format). 
Displays or modifies program memory at address using 
symbolic format.

IN address,instruction Insert instruction. Inserts instruction at address in 
symbolic format.

IP [time|step] Injection Point. Injects a stimulus according to the time or 
step count. With no parameters, displays current mode.

IR {ALL | RAM SFR} Initialize with Random Values. Loads random values into 
registers. 

LJ Load and Execute Journal File.

LO filename[format] Load Hex File. Loads the hex file, filename, with format 
into program memory. MPSIM also loads the listing file 
and symbol file.

Valid Formats: INHX8M  (Default)

INHX8S

LR [filename] Load Registers. Loads contents of registers with data 
from a DOS text file.

LS filename Load Symbol File. Load filename into internal symbol 
table.

M address Display/Modify Program Memory at Address. The 
contents at the address display, and a colon (:) prompt 
follows. To change the value at address, enter a new 
value (in the current radix) after the prompt.

Q End the command

– Cause MPSIM to go back to the previous 
address

<Enter↵ > Continue to the next address



  1995 Microchip Technology Inc. DS30027I - page 51

Chapter 5. MPSIM Commands

Alphabetic Summary of MPSIM Commands (Continued)

NV No View Screen. Clear the view screen. The same effect 
can be achieved by redefining the view screen with V 
command.

O filename [format] Output Modified Object Code. Writes contents of 
program memory, including modifications, to the 
specified file in the designated format.

Valid Formats: INHX8M  (Default)

NHX8S

INHX32 (for PIC17CXX)

P device# Select Microcontroller. Choose the appropriate 
microcontroller device#. The default is 55 which 
represents PIC16C55.

device# = XX where XX is a device suffix.

Q Quit. Terminates the dialog. Prints one or two summary 
messages, overwrites the old journal file and exits to the 
opening system.

RA Restore All. Restores patch table, clears symbol table 
and removes all breakpoints.

RE Reset Elapsed Time and Step Count.

RP Restore Patches. Restores all patches to original value 
and clears the patch table.

RS Reset Chip. Simulates a power-on reset.

SC [cyclelength] Display/Set Processor Cycle Time. Displays or modifies 
the microcontroller’s simulated cycle time.

SE [I/O_pin | port] Display/Modify I/O Pin. Displays or modifies an I/O_pin 
or port.

SF address1,address2,register Search Program Memory for Register. Searches 
program memory from address1 to address2 for any 
instruction that accesses the specified file register.

SI addr1,addr2,instruction Search Program Memory in Symbolic Format from 
address1 to address2 for any occurrence of instruction.

SM addr1,addr2,instruction Search Program Memory in Radix Designated Format. 
(See SR command to set the radix.) Searches program 
memory from address1 to address2 for any occurrence 
of instruction. Specify instruction in the current radix.

SR {0|x|D} Set Radix. Sets the input/output radix to octal, 
hexadecimal, or decimal. The radix will be used on all 
inputs and outputs with the exception of step counts.



MPSIM USER’S GUIDE

DS30027I - page 52   1995 Microchip Technology Inc.

Alphabetic Summary of MPSIM Commands (Continued)

SS [address] Execute a Single Step. Executes a single instruction at 
the specified address or at the current PC if address is 
omitted.

To single step through multiple instructions, enter SS 
once and press <Enter↵ > at the % prompt. Then 
continue pressing <Enter↵ >.

ST filename Read Stimulus File. Loads stimulus file.

TA [address1,address2] Trace Address. Sets the lower validation limit for address 
trace to address1 and the upper address validation limit 
to address2. With no arguments, MPSIM uses the full 
range of program memory.

TC [#instructions] Trace Instructions. Trace the next #instructions. If you 
omit #instructions, execution continues until MPSIM 
encounters a breakpoint or until you press any key.

TF [filename|PRN] Trace to File/Printer. Open/Close trace output file or write 
trace to printer. With no argument, TF closes file.

TR register [,min_val,max_val] Trace Register. Sets the file register trace. With no 
arguments, traces any file register. To perform trace only 
when register value lies between min_val and max_val, 
specify the min_val and max_val.

TY FileReg,radix,#digits Change View Screen. Change the formatting of the 
existing view screen. (If the designated signal isn’t in the 
view screen, MPSIM gives a warning.) The radix can be 
x, o, d, or b. #digits is the number of spaces to reserve 
for this variable at display time.

UR {ALL|RAM|SFR}[filename] Upload Registers. Uploads contents of registers into a 
DOS text file. 

V FileReg[,radix[,#digits]] View Screen. Sets up the view screen. Once set, the 
view screen remains active until either a NV command or 
a V command sets up a new view screen. FileReg 
displays in radix mode with #digits. Radix defaults to 
hexadecimal and #digits to 1. The radix can be 
hexadecimal, octal, decimal or binary (x, o, d, or b).

Verbose [ON|OFF] Echo to View Screen. Prints a line to the view screen 
(and to the optional trace file) when a stimulus is injected 
into a pin. The command, without an argument, displays 
the current setting.

W Work Register Display/Modify. Displays/modifies the 
contents of the W register.



  1995 Microchip Technology Inc. DS30027I - page 53

Chapter 5. MPSIM Commands

Alphabetic Summary of MPSIM Commands (Continued)

WP {1 |...| 128} Watchdog Timer Period. Sets watchdog timer time-out 
period in  ms. With no parameters, displays current 
setting. Check the device AC characteristics table for 
typical twdt ranges.   

ZM address1,address2 Zero the Program Memory from address1 to address2.

ZP Zero the Patch Table. Clears patch table and resets to no 
patches made. Changes made to the object code are 
unaffected, and object code cannot be restored to the 
original.

ZR Zero the Registers. Zeros all file registers.

ZT Zero the Elapsed Time Counter.



MPSIM USER’S GUIDE

DS30027I - page 54   1995 Microchip Technology Inc.

AB – Abort Session

Syntax
AB

Description
The abort command interrupts the MPSIM session and exits. It prints out one 
or two summary messages, and exits to the operating system. MPSIM retains 
the journal file.

Examples

Defaults
None.

AD – Add Item to View Screen

Syntax
AD FileReg[,radix[,#digits]]

Description
The Add command adds a signal or register to the view screen. Optionally, 
you may specify a radix different from the default and/or the number of digits.

While this command’s format is identical to View, it doesn’t destroy the current 
contents of the view screen, but simply displays additional items as well as 
the current ones.

MPSIM Command Result

AB<RETURN> MPSIM exits and displays the 
following message:

Elapsed CPU time: h:mm:ss



  1995 Microchip Technology Inc. DS30027I - page 55

Chapter 5. MPSIM Commands

Examples

Defaults
Digits defaults to 2. The radix ordinarily defaults to hexadecimal, but you 
can change this default with the SR command. 

Related Commands
The V command displays the first signal or register you request. 
Subsequently, you can add display items with AD or delete them with DV. If 
you use a V command after AD, V replaces all previous display items on the 
screen with the named signal or register. The NV command wipes all display 
items off the screen.

The GE command can load an initialization file that sets up the view screen. 
Thereafter, you can use AD and DV to modify it.

Note: When referencing registers for the AD instruction use hex notation. For 
example, file register 10 would be written as “0A”. 

Example: 

AD F0A, X, 2

MPSIM Command Result

AD TRISA Add Tris A to the screen.

AD RA0,B Add the RA0 pin to the screen 
display with binary radix.

AD MCLR,4 Add MCLR pin to the screen display 
with 4 digits.

AD F3,B,8 Add the F3 register (status) to the 
screen display with binary radix and 
8 digits.

Radix Digits

X 2

B 8

O 3

D 2



MPSIM USER’S GUIDE

DS30027I - page 56   1995 Microchip Technology Inc.

B – Set Breakpoint

Syntax
B  address

B  FileReg [operator value]

Description
This command sets a breakpoint at the specified address or at the location 
where the register matches the condition set by the operator and the value.

You can designate the address either with the explicit numeric location or with 
a symbol.

The operator can be any of the following:

Examples

Defaults
None.

Related Commands
BC clears breakpoints previously set and DB displays them.

Note: When referencing registers for relational instructions use decimal 
notation.

= equal

> greater than

< less than

>= greater than or equal

<= less than or equal

!= not equal

MPSIM Command Result

B LOOP<RETURN> Set breakpoint at label LOOP.

B F2 > 80<RETURN> Break if F2 is greater than 80.



  1995 Microchip Technology Inc. DS30027I - page 57

Chapter 5. MPSIM Commands

BC – Clear Breakpoint

Syntax
BC 

BC  [addr | FileReg]

Description
This command deletes a specified breakpoint, or all breakpoints if you don’t 
specify one by address or file register.

Examples

Defaults
None.

Related Commands
B sets breakpoints and DB displays them.

C – Continue Executing

Syntax
C   [#breakpoints]

Description
This command continues execution from the current PC. If you specify 
#breakpoints, MPSIM ignores the first #breakpoints breakpoints encountered.

MPSIM Command Result

BC LOOP Cancel breakpoint at LOOP.

BC F3 Cancel breakpoint involving the F3 register.

BC Cancel all breakpoints.



MPSIM USER’S GUIDE

DS30027I - page 58   1995 Microchip Technology Inc.

Examples

Defaults
n defaults to 0.

Related Commands
B sets the breakpoints, DB displays them and BC clears breakpoints 
previously set.

CK – Clock

Syntax
CK [pin,{#hi,#low|–}]

Description
This command allows you to assign a clock to an I/O pin, defining the period 
of the clock by stating the number of cycles that the pin should be high, and 
the number of cycles that it should be low.

No Argument Displays current clock assignment.

#hi Defines the number of T-cycles that the pin should 
remain high

#low Defines the number of T-cycles that the pin should 
remain low

pin,– Disables clock on specified pin.

Examples

Defaults
None

MPSIM Command Result

C Continue executing, break at the next breakpoint.

C 3 Continue executing, skip the first three 
breakpoints found, but break at the fourth.

MPSIM Command Result

% CK RC0, 5, 4 Assign a clock to RC0 with a 9 T-cycle period (5 
high and 4 low cycles)

% CK RC0, - Cancel clock on RC0

% CK Display current clock assignment



  1995 Microchip Technology Inc. DS30027I - page 59

Chapter 5. MPSIM Commands

Related Commands
None

DB – Display All Active Breakpoints

Syntax
DB

Description
This command lists all active breakpoints. MPSIM allows only one conditional 
breakpoint per data area.

Examples

Defaults
None.

Related Commands
B sets the breakpoints, DB displays them and BC clears breakpoints 
previously set.

DE – Delete Program Memory

Syntax
DE address1,address2

Description
This command deletes the information stored between address1 and 
address2, inclusively. The DE command deletes memory within the given 
boundaries then shifts those locations in program memory that are greater 
than the upper bound down to the lower bound.

MPSIM Command Result

B LOOP Sets a breakpoint at LOOP.

B F2 > 80 Sets a breakpoint at the location where F2 >80.

DB Displays all breakpoint locations via messages:

INFO, Break when (F2 > 0080)

INFO, Break on address LOOP



MPSIM USER’S GUIDE

DS30027I - page 60   1995 Microchip Technology Inc.

Examples

Defaults
None.

Related Commands
None.

DI – Display Program Memory in Symbolic Format

Syntax
DI [address1[, address2]]

Description
This command displays program memory in symbolic format from address1 
to address2. address1 must be less then address2 and both must be in 
the valid range of program memory. If no address2, then a screen full of 
lines displays from address1.

You can terminate DI at any time by pressing any key at the terminal.

Examples

Defaults
None.

Related Commands
The DM command also displays memory between two specified addresses; 
however, DM displays the code in the format specified by the current radix 
rather than in symbolic format.

MPSIM Command Result

DE 0015, 0020 Removes the code from address 15 thru 
address 20, moving code from 21 to the end of 
code to address 16.

MPSIM Command Result

DI  0, 3 The following messages display:

  0000    0020     MOVWF 0

  0001    0063     CLRF 3

  0002    0080     SUBWF 0, 0

  0003    0069     CLRF 9



  1995 Microchip Technology Inc. DS30027I - page 61

Chapter 5. MPSIM Commands

DK – Define Key

Syntax
DK   [AltFxKey#,[pin,event]|[–]]

Description
AltFxKey# is an integer value between 1 and 12.

AltFxKey#– Cancels specified function.

Pin  is any valid I/O pin.

Event is H, L, T or P (high, low, toggle or pulse)

– Cancels all assignments.

No Argument Displays assignments of all function keys.

This command simulates an asynchronous event through an Alt-function 
keystroke and is very useful for simulating external interrupts or resets.

This function is used after a “GO” or “E” command. If you want to inject a 
stimulus while stopped at a breakpoint, use the “SE” command.

In addition to the stated syntax, the following sequences perform the indicated 
operations.

DK Displays assignment of all function keys

DK AltFxKey Displays assignment of specified function key

DK AltFxKey, - Cancels specified function

DK - Cancels all assignments



MPSIM USER’S GUIDE

DS30027I - page 62   1995 Microchip Technology Inc.

Examples

Defaults
None

Related Commands
SE, ST

DL – Delete Symbol from Symbol Table

Syntax
DL symbol

Description
This command removes the specified symbol from the symbol table.

Examples

Defaults
None.

MPSIM Command Result

% DK 1,RB0,L

% E When MPSIM is executing, if Alt-F1 is hit, 
RB0 will be driven low.

% DK 12, MCLR, P Define Alt-F12 to provide a one-cycle pulse 
on MCLR.

% E Now during execution (with MCLR high) hitting 
Alt-F12 will simulate an external reset.

% DK 3, T0CKI, T Define Alt-F3 to toggle T0CKI input.

% E Now during execution, every time Alt-F3 is 
pressed RTCC input will toggle. 

% DK - Disable all assignments.

MPSIM Command Result 

DL MULPLR MPSIM removes “mulplr” from the symbol table. 
To provide to or obtain data from this data area, 
you must now use the actual register number, F10. 
The value on the view screen, since it reads 
“MULPLR” isn’t updated.



  1995 Microchip Technology Inc. DS30027I - page 63

Chapter 5. MPSIM Commands

Related Commands
GS creates a symbol and puts it into the symbol table, LS loads a new symbol 
table, DS displays the current symbol table and RA restores (clears) the 
symbol table.

DM – Display Program Memory in 
Radix Designated Format

Syntax
DM [address1,address2]

Description
This command displays program memory from address1 to address2. The 
data stored displays in the format designated by the current radix  address1 
must be less than address2 and both must be in the valid range for program 
memory.

You can terminate DM at any time by pressing any key on the terminal.

Examples

Defaults
None.

Related Commands
The DI command also displays memory between two specified addresses; 
however, DI displays the code in symbolic format rather than in the format 
specified by the current radix.

MPSIM Command Result

DM 0, 3 MPSIM displays the memory between locations 0 
and 3. The following messages display:

0000  0020

0001  0063

0002  0080

0003  0069



MPSIM USER’S GUIDE

DS30027I - page 64   1995 Microchip Technology Inc.

DP – Display All Patches

Syntax
DP

Description
This command displays all patches in symbolic format. Both the original 
object code and new object code display.

Defaults
None.

Related Commands
The M and IA commands modify the object code; .IN adds commands to the 
object code; DE removes object code; RA and RP restore the patches; and ZP 
zeros the patches. The command, O, writes the modified object code as a hex 
file.

DR – Display All Registers

Syntax
DR

Description
This command displays the contents of all registers including the W and 
status registers, all flags and the stack.

Defaults
None.

Related Commands
The DP, DS, and DX commands display other MPSIM data areas and 
parameters.

SE sets any data area’s value.  W displays and optionally modifies the W 
register. 

F displays and optionally modifies a register value.



  1995 Microchip Technology Inc. DS30027I - page 65

Chapter 5. MPSIM Commands

DS – Display Symbol Table

Syntax
DS

Description
This command displays the symbol table.

Examples

Defaults
None.

Related Commands
GS creates a symbol and puts it into the symbol table, LS loads a new symbol 
table, DL removes a symbol from the current symbol table and RA restores 
(clears) the symbol table.

DV – Delete View Screen Item

Syntax
DV FileReg

Description
This command removes display items from the view screen while leaving the 
display formatting intact.

This command deletes a signal or register from the view screen display.

Examples

Defaults
None.

MPSIM Command Result

DS The following messages display:

Symbol Value Type

START 0000  L

MPSIM Command Result

DV RTCC Deletes the RTCC from the view screen.



MPSIM USER’S GUIDE

DS30027I - page 66   1995 Microchip Technology Inc.

Related Commands
The V command displays the first signal or register you request. 
Subsequently, you can add display items with AD or delete them with DV. If you 
use a V command after AD, V replaces all previous display items on the screen 
with the named signal or register. The NV command wipes all display items off 
the screen.

The GE command can load an initialization file that sets up the view screen. 
Thereafter, you can use AD and DV to modify it.

DW – Enable / Disable Watchdog Timer

Syntax
DW [E|D]

Description
This command enables or disables the watchdog timer, depending or the 
parameter specified. E enables it; D disables it.

Examples

Defaults
None.

Related Commands
RE resets the elapsed time and step count and ZT zeros the elapsed time.

DX – Display Current Trace Parameters

Syntax
DX

Description
This command displays the current trace parameters. When in trace mode, 
the location, opcode, mnemonic, elapsed time, cycle steps, and any changed 
data areas display when the given conditions are met.

MPSIM Command Result

DW E Enables the watchdog timer.

DW D Disables the watchdog timer.



  1995 Microchip Technology Inc. DS30027I - page 67

Chapter 5. MPSIM Commands

Examples

Defaults
None.

Related Commands
The TA, TC and TR commands set the trace parameters.

E – Execute Program

Syntax
E [address]

Description
This command executes the program from the optionally specified address or 
the PC.

The E command begins execution at the specified address or at the current 
address if no address is specified. The program continues to execute until 
either reaching a breakpoint or until you press a key.

Examples

Defaults
None.

Related Commands
The GO command resets then executes from the start; SS executes the 
instruction at the current PC or at a specified address.  C executes from the 
current PC to the specified breakpoint occurrence.  TA traces execution 
between specified addresses, and TC traces execution from the current PC for 
a specified number of instructions.

MPSIM Command Result

DX The following message displays:

Address     0000:01FF

MPSIM Command Result

E 0E MPSIM executes SAMPLE.HEX from the label 
START until reaching a breakpoint or until you 
press any key.



MPSIM USER’S GUIDE

DS30027I - page 68   1995 Microchip Technology Inc.

EE – Modify EE Memory

Syntax
EE address

Description
Manually Modify EE memory address on the PIC16C84.

Examples

Defaults
None.

EL – Error Level

Syntax
EL  {0 | 1 | 2}

Description
This command sets the current level for displaying error messages and 
system warnings.

0 = Display All Messages

1 = Display Warnings and Errors Only

2 = Display Error Messages Only

Enter EL with no parameters to display current level.

MPSIM 
Command

Result

% EE 2 EEMEMORY[2]:00:

23 EE memory location 2 now contains value 0x23.



  1995 Microchip Technology Inc. DS30027I - page 69

Chapter 5. MPSIM Commands

Examples

Defaults
All messages are displayed (Error level of 0).

Related Commands
None

F – File Register Display/Modify

Syntax
F FileReg

Description
This command displays and/or modifies the contents of the specified file 
register. The value of the register displays, followed by the prompt ‘:’. Place 
the new value after the prompt.

Examples

Defaults
None.

Related Commands
The SE command can give the same result.  DR, TR and ZR display, trace 
and zero a specified register, respectively.  M and IA modify the code at a 
specified address, which can affect the register’s value.

MPSIM Command Result

% EL 0 All messages will display.

% EL 1 Only warnings and Error messages will display.

% EL 2 Only error messages will display.

% EL Current warning level will display.

MPSIM Command Result

% F 3 The following message displays:

          3:  20: This message shows that file register 3 contains 
the value ‘20.’

% F 3

    3: 20: 21 Change file register 3 to a value of ‘21.’



MPSIM USER’S GUIDE

DS30027I - page 70   1995 Microchip Technology Inc.

FI – File Input

Syntax
FI {filename,addr,FileReg[,n]|–}

Description
This command inserts the next value from filename into file register when 
current PC=addr. If n is not specified, when the last value in the file is read, 
the next retrieved value will be the first value in the file. This will continue until 
the command is cancelled. If n is specified then the file will be read n times 
only.

Examples

The FI command is useful when simulating devices such as the PIC16C71 
and PIC16C74. Both of these devices have A/D converters (among other 
peripheral modules). MPSIM does not perform an A/D conversion, although 
the interrupt that can be generated upon its completion is supported in the 
software. The FI command allows you to inject values into a register when a 
certain point in program memory is reached. For example, if the target 
processor is the PIC16C71, you could set up your source code to branch to 
the interrupt vector at the end of conversion and inject a value into the ADRES 
register during the interrupt service routine (by using the FI command).

FileName is any valid DOS file name. The file should be an ASCII 
file and should contain one hex value per line.

PMemAddr is the point in program memory at which value should 
be injected.

FRegAddr File register that receives the value.

n Number of times to go through the file. If n is not 
specified, file is read continuously.

FI -  Closes file and cancels command.

MPSIM Command Result

% FI ADVAL.TXT, 4,9 When the PC=4, insert the next value from 
ADVAL.TXT into register 9.

% FI - Close file and cancel assignment.



  1995 Microchip Technology Inc. DS30027I - page 71

Chapter 5. MPSIM Commands

The command could be set up as follows:

FI ADVAL.TXT, 0x04 0x09

When the Program Counter equals the interrupt vector (program memory 
address 0x04), inject the next value in the file (ADVAL.TXT) into the ADRES 
register (file register address 0x09).

org 0x04
IntVct bcf INTCON, ADIE ;At this point, the next 

movfw ADRES ;value in ADVAL.TXT will
;be in the ADRES register

•
•
•

The format of the ADVAL.TXT file is one HEX value on each line. For 
example:

0xAA

0X55

0XAA

0X55

and so on.

Defaults
None.

Related Commands
None.

FM – Fill Memory

Syntax
FM address1,address2,pattern

Description
This command fills unused program memory between address1 and 
address2 with the specified HEX pattern.

Examples

MPSIM Commands Result

% FM 0,30,0xFFF Fill unused program memory between 0 and 30 
with 0xFFF.



MPSIM USER’S GUIDE

DS30027I - page 72   1995 Microchip Technology Inc.

Defaults
None.

Related Commands
M

FW – Fuse Word

Syntax
FW {MC|EM|MP|RC256|RC64|RC|OSC}

Description
This command selects the operation mode (Microcontroller Mode, Extended 
Microcontroller Mode, and Microprocessor Mode) or the WDT prescale option 
for processors in the PIC17CXX family only (these options are hardware fuse-
selectable only on the physical device).

MC = Microcontroller Mode

EM = Extended Microcontroller Mode

MP = Microprocessor Mode

Type FW with no parameters to display current modes.

Examples

Defaults
Operation mode = Microprocessor

WDT Prescale = OSC

Related Commands
None.

MPSIM Command Result

% FW MC Processor will run in Microcontroller Mode

% FW RC64 WDT will have a prescale = 64

% FW Current operation mode and WDT prescale 
option are displayed.



  1995 Microchip Technology Inc. DS30027I - page 73

Chapter 5. MPSIM Commands

GE – Get Commands from an External File

Syntax
GE filename

Description
This command reads and performs the MPSIM commands in the named 
ASCII file.

This command forces MPSIM to get its command stream from an external text 
file. After reaching the end of file, control returns to the user. Commands in 
the text file must conform to the same syntax as commands entered on-line. If 
MPSIM cannot locate the specified file, an error message displays.

Examples

Defaults
None.

Related Commands
The V command displays the first signal or register you request. 
Subsequently, you can add display items with AD or delete them with DV. If you 
use a V command after AD, V replaces all previous display items on the screen 
with the named signal or register. The NV command wipes all display items off 
the screen.

The GE command can load an initialization file that sets up the view screen. 
Thereafter, you can use AD and DV to modify it.

MPSIM Command Result

GE SAMPLE.INI Reads and performs commands in the file, 
SAMPLE.INI.



MPSIM USER’S GUIDE

DS30027I - page 74   1995 Microchip Technology Inc.

GO – Reset and Execute

Syntax
GO

Description
This command performs a Power-On Reset and initializes all registers as 
specified in the microcontroller data sheet. The PIC16/17 Microcontroller then 
executes the loaded object code.

Examples

Defaults
None.

Related Commands
The E command executes from a specified address or the current PC; SS 
executes the instruction at the current PC or at a specified address. C 
executes from the current PC to the specified breakpoint occurrence. TA 
traces execution between specified addresses, and TC traces execution from 
the current PC for a specifies number of instructions.

GS – Generate Symbol

Syntax
GS symbol,value,type

Description
This command generates the specified symbol with the specified value and 
type. The type can be file(F), bit(B), label(L), or literal(K). If the type is bit, it is 
a bit in the specified file.

MPSIM Command Result

GO Reset and execute.



  1995 Microchip Technology Inc. DS30027I - page 75

Chapter 5. MPSIM Commands

Examples

Defaults
None.

Related Commands
DL removes a symbol from the current symbol table, LS loads a new symbol 
table, DS displays the current symbol table and RA restores (clears) the 
symbol table.

H – Help

Syntax
H | Help | ?

Description
This command lists the syntax and gives a brief summary of each command 
available in MPSIM. Press the SPACEBAR to exit Help. Press any other key to 
display the next help screen. 

Examples

Defaults
None.

Related Commands
None.

MPSIM Command Result

% DS

Symbol Value Type

START 0000 L

% GS NEWSYM, FF, B

% DS

Symbol Value Type

START 0000 L

NEWSYM FF B

MPSIM Command Result

H The Help screen, containing command 
descriptions and syntax displays.



MPSIM USER’S GUIDE

DS30027I - page 76   1995 Microchip Technology Inc.

IA – Insert/Inspect Assembly Code

Syntax
IA address

Description
This command displays or modifies the program memory at address in 
symbolic format. The source code for the address displays, followed by the 
prompt ‘:’ on the next line for the new command.

Enter the new command as a mnemonic.  It must be syntactically correct. 
Operands may contain only a single value or symbol; expressions are not 
allowed. Enter values in the current radix.

Entering ‘Q’ at the prompt ends the command; entering ‘-’ causes MPSIM to 
go back and inspect and/or modify the previous address; entering <RETURN> 
continues to the next address.

After changing the object code, MPSIM no longer displays the original source 
code. MPSIM replaces it with a disassembled source line.

Examples

Defaults
None.

Related Commands
DE, IN, M

MPSIM Command Result

% IA 200<RETURN> The instruction line at address 200 (in current 
radix) displays:

   0020   :   CLRF F5

: CLRF 6 MPSIM changes the instruction as specified and 
displays the next instruction line (address 201):

   0201   :   CLRF F7:

:  - MPSIM backs up and displays the modified 
instruction at address 200:

   0200   :   CLRF 6:

: Q MPSIM exits the IA command.



  1995 Microchip Technology Inc. DS30027I - page 77

Chapter 5. MPSIM Commands

IN – Insert Instruction

Syntax
IN address,instruction

Description
This command inserts instruction at address. The instruction places an 
opcode at address then displaces each program memory value after address 
by one location. instruction must consist of a valid mnemonic followed by zero 
or more operands. Each operand must contain a single value or symbol, no 
expressions are allowed.

Examples

Defaults
None.

Related Commands
DE, IA, M

IP – Injection Point 

Syntax
IP [time|step]

Description
Inject stimulus according to time or step count. The “step” heading should 
remain labeled as “step” in the stimulus file, but IP TIME will override this 
setting. If IP is typed with no parameters, the current mode (TIME or STEP) 
will be shown. With no parameters, displays current mode.

MPSIM Command Result

% IN 200, NOP MPSIM inserts a NOP instruction at 
address 200 (in the current radix).



MPSIM USER’S GUIDE

DS30027I - page 78   1995 Microchip Technology Inc.

Examples

Defaults
Default is “step”

Related Commands
None.

IR – Initialize with Random Values

Syntax
IR {ALL | RAM SFR}

Description
Loads random values into registers. Will also load the power on reset values 
into those registers that have defined power on reset values defined in the 
data book.

Examples

Defaults
ALL file registers will be loaded with random values.

Related Commands
UR, LR

MPSIM Command Result

% IP time Stimulus will now be injected according to time 
(integer values only).

MPSIM Command Result

% IR ALL All registers will be initialized with random 
values, except those that have defined values for 
power on reset.

% IR RAM Only general-purpose registers will be initialized 
with random values



  1995 Microchip Technology Inc. DS30027I - page 79

Chapter 5. MPSIM Commands

LJ – Load and Execute Journal File 

Syntax
LJ

Description
This command loads and executes the journal file commands. These 
commands are not stored in the journal file recorded from the current session; 
MPSIM enters only the LJ command.

When the journal file contains a program execution command, you must 
press a key to stop program execution or wait until a breakpoint break occurs; 
the journal file doesn’t record premature execution breaks or exits.

Examples

Defaults
The default extension is ‘.JRN’.

Related Commands
GE, LJ, LO, ST

LO – Load Object File

Syntax
LO filename {format}

Description
This command loads the specified file into program memory. If the selected 
assembler is MPASM, MPSIM will assume a .HEX extension. After loading the 
HEX file, MPSIM attempts to load the listing file using the same filename and 
the extension ‘.LST’. If MPSIM cannot find the listing file then all instruction 
displays will be a disassembly. When found, MPSIM uses the listing file for 
display throughout simulation.

MPSIM Command Result

% LJ All MPSIM commands entered during the previous 
MPSIM session execute. These commands are not 
stored in the journal file recorded from the current 
session.



MPSIM USER’S GUIDE

DS30027I - page 80   1995 Microchip Technology Inc.

The following is a list of valid formats:

INHX8M

INHX8S

Examples

Defaults
The default extension is ‘.HEX’ and the default format is INHX8M.

Related Commands
GE, LJ, LS, ST

LR – Load Registers

Syntax
LR filename

Description
This command loads the contents of registers with data from a DOS text file.

This command loads each file register listed on each row of “filename” with 
the specified value. If no file name is supplied, MPSIM searches for a file 
called “ram.dat”.   Each line in the file should consist of the Bank Number, File 
Register Number, and Value as follows:

BankNumber : FileRegisterNumber , Value

This format is also used with the “UR - Upload Registers” command. The 
following sample is an excerpt from a “ram.dat” file:

;File register values for “myfile.asm”

0, 0x0F, 0x0F

0, 0x10, 0xAA

0, 0x17, 0xFF

All values should be in hexadecimal radix and should begin in the first column 
of each row. Blank lines or lines beginning with “;” or “!” will be interpreted as 
comment lines and will be ignored.   If an error is found in the file, a warning 
message will be displayed and the offending line will be ignored.

MPSIM Command Result

% LO SAMPLE The HEX, listing and symbol file are loaded 
into MPSIM in INHX8M format.

% LO SAMPLE INHX8S The HEX, listing and symbol file are loaded 
into MPSIM in INHX8S format.



  1995 Microchip Technology Inc. DS30027I - page 81

Chapter 5. MPSIM Commands

Examples

Defaults
Registers and values from “ram.dat” file are loaded.

Related Commands
UR, IR

LS – Load Symbol File

Syntax
LS filename

Description
This command loads the specified symbol file into the internal symbol table. If 
symbolic debugging, the symbol file produced by the assembler must be 
loaded with the LS command or loaded through the LO command.

Examples

Defaults
The default extension is ‘.SYM’.

Related Commands
GS, DL, DS, RA

MPSIM Command Result

% LR File registers in “RAM.DAT” will be loaded with 
specified value

% LR myfile File registers in “myfile” will be loaded with 
specified value.

MPSIM Command Result

% LS SAMPLE MPSIM reads in the symbol file SAMPLE.



MPSIM USER’S GUIDE

DS30027I - page 82   1995 Microchip Technology Inc.

M – Display / Modify Program Memory at Address

Syntax
M address

Description
This command displays and/or modifies program memory at address. The 
contents of the address display in the radix designated format, and are 
followed immediately by a prompt ‘:’.

To change the value at address, place a new value after the prompt. Be sure 
to enter that value in the current radix. 

Entering ‘Q’ at the prompt ends the command.

Entering ‘-’ causes MPSIM to go back and inspect and/or modify the previous 
address.

Entering <RETURN> continues to the next address.

Examples

Defaults
None.

Related Commands
IA

MPSIM Command Result

% M 0005 MPSIM displays the instruction line at address 
0005 (as determined by the current radix) in the 
current radix:

% SR O

% M 010 MPSIM sets the radix to octal, then displays the 
instruction line at the label MAIN in octal.

% Q MPSIM exits the M command.

% SR X

% M 010 MPSIM sets the radix to hexadecimal, then 
displays the instruction line at the label MAIN in 
hexadecimal.

: — MPSIM redisplays the instruction line at MAIN.

% SR D

% M main MPSIM sets the radix to decimal, then displays 
the instruction line at the label MAIN in decimal.



  1995 Microchip Technology Inc. DS30027I - page 83

Chapter 5. MPSIM Commands

NV – No View Screen

Syntax
NV

Description
This command deletes or clears all elements from the view screen.

The same effect can be achieved by redefining the view screen.

Examples

Defaults
None.

Related Commands
AD, V

O – Output Modified Object Code

Syntax
O filename [Format]

Description
This command writes the contents of program memory, including any 
modifications to the specified file in the specified format. The program 
memory contains object code.

The following is a list of valid formats:

INHX8M

INHX8S

INHX32

MPSIM Command Result

% NV MPSIM removes all items from the view screen.



MPSIM USER’S GUIDE

DS30027I - page 84   1995 Microchip Technology Inc.

Examples

Defaults
Default output format is the same as the default input format, INHX8M.

Related Commands
None.

P – Select Microcontroller 

Syntax
P device#

Description
Use this command to choose the appropriate microcontroller device#. The 
default is 55 which represents PIC16C55.

device# = XX where XX is a device suffix.

Examples

Defaults
The simulated microcontroller defaults to 55.

Related Commands
None.

MPSIM Command Result

% O SAMPLE1.HEX INHX8M MPSIM writes the object code, as 
modified, to the file SAMPLE1.HEX in the 
INHX16 format.

MPSIM Command Result

% P 71  MPSIM sets the processor type.



  1995 Microchip Technology Inc. DS30027I - page 85

Chapter 5. MPSIM Commands

Q – Quit

Syntax
Q

Description
This command exits from MPSIM and returns PC control to DOS. MPSIM 
stores all MPSIM commands entered during this session in the journal file, 
MPSIM.JRN. The old MPSIM.JRN, if present, is overwritten.

Examples

Defaults
None.

Related Commands
AB

RA – Restore All

Syntax
RA

Description
This command restores the patch table, clears the symbol table of user 
defined symbols and removes all breakpoints.

Examples

Defaults
None.

MPSIM Command Result

% Q MPSIM exits and displays the following       
message:

Elapsed CPU time: h:mm:ss.

MPSIM Command Result

% RA MPSIM restores the patch table, clears the symbol 
tables and removes all breakpoints.



MPSIM USER’S GUIDE

DS30027I - page 86   1995 Microchip Technology Inc.

Related Commands
RP, DL, BC

RE – Reset Elapsed Time and Step Count

Syntax
RE

Description
This command resets the elapsed time and the step count to zero.

Examples

Defaults
None.

Related Commands
ZT

RP – Restore Patches

Syntax
RP

Description
This command restores all patches to their original value and clears the patch 
table.

Examples

Defaults
None.

MPSIM Command Result

% RE MPSIM resets the elapsed time and the step 
count to zeros.

MPSIM Command Result

% RP MPSIM restores all patches.



  1995 Microchip Technology Inc. DS30027I - page 87

Chapter 5. MPSIM Commands

Related Commands
RA

RS – Reset Chip

Syntax
RS

Description
Performs a Power-On Reset and initializes all registers as specified in the 
data sheet of the specified microcontroller.

Examples

Defaults
None.

Related Commands
GO

SC – Display / Modify Processor Cycle Time

Syntax
SC [cyclelength]

Description
This command displays and/or modifies the microcontroller’s simulated cycle 
time.

MPSIM Command Result

% RS Executes a Power-On-Reset.



MPSIM USER’S GUIDE

DS30027I - page 88   1995 Microchip Technology Inc.

Examples

Defaults
The simulated cycle time defaults to 2 microseconds.

Related Commands
None.

SE – Display / Modify I/O Pin

Syntax
SE [I/O_pin | port]

Description
This command displays or modifies an I/O_pin or port.

Examples

Defaults
None.

Related Commands
F, W, ZR

MPSIM Command Result

% SC MPSIM displays the current cycle in µs: 2.0:

2.0:.2 The entry ‘.2’ changes the cycle to .2µs, or 
200 ms.

% SC 2000.0 The cycle length is changed to 2000.0µs or 
2.0 ms.

MPSIM Command Result

% SE RA0 The following message displays: RA0=1:

RA0:1:0 The value of I/O pin RA0 changes from 1 to 0.



  1995 Microchip Technology Inc. DS30027I - page 89

Chapter 5. MPSIM Commands

SF – Search Program Memory for Register

Syntax
SF address1,address2,register

Description
This command searches program memory from address1 to address 2 for 
any instruction that access the specified register. Register may be specified in 
literal, ‘F’ syntax or as a symbol.

Examples

Defaults
None.

Related Commands
SI, SM

MPSIM Command Result

SF 0, 22, portb MPSIM search all memory from 0 through 22 for 
instructions that reference the portb register, then 
displays the lines containing the specified 
instruction

0000 0000    main movf portb,W

0006 0000    movf portb,W



MPSIM USER’S GUIDE

DS30027I - page 90   1995 Microchip Technology Inc.

SI – Search Program Memory in Symbolic Format

Syntax
SI address1,address2,instruction

Description
This command searches program memory from address1 to address2 for any 
occurrence of instruction.  instruction is in symbolic format. Full or partial 
instructions may be specified.

Examples

Defaults
None.

Related Commands
SF, SM

SM – Search Program Memory in Radix 
Designated Format

Syntax
SM address1,address2,instruction

Description
This command searches program memory from address1 to address2 for 
instruction. Specify instruction in the format designated by the radix. 

MPSIM Command Result

% SI 0, 20, CLRF MPSIM searches all memory from 0 through 
20 for CLRF instructions, then displays the 
lines containing the specified instruction:

0000  mpy_S clrf H_byte

0001 clrf L_byte

% SI 0, 20, MPSIM searches all movwf count memory 
from 0 through 20 for  MOVWF COUNT 
instructions, then display the lines containing 
the specified instruction:

0003    movwf    count



  1995 Microchip Technology Inc. DS30027I - page 91

Chapter 5. MPSIM Commands

Examples

Defaults
None.

Related Commands
SF, SI

SR – Set Radix

Syntax
SR [O|X|D]

Description
This command sets the radix to octal, hexadecimal or decimal. Subsequently, 
MPSIM expects and uses this radix for all I/O including file register numbers 
and step counts.

Examples

Defaults
None.

Related Commands
None.

MPSIM Command Result

% SM 0, 30, C08 MPSIM searches all memory from 0 
through 20 for the specified instruction, then 
displays, in the current radix, the lines 
containing it:

    0002  movlw  8

MPSIM Command Result

% SR O The radix becomes octal.

% SR X The radix becomes hexadecimal.

% SR D The radix becomes decimal.



MPSIM USER’S GUIDE

DS30027I - page 92   1995 Microchip Technology Inc.

SS – Execute A Single Step

Syntax
SS [address]

Description
This command executes a single step located at address. If you don’t specify 
address, MPSIM executes the instruction at the current PC. Pressing 
<RETURN> at the % prompt re-executes the previous MPSIM command. Thus, 
by entering SS once and subsequently pressing simply <RETURN>, you can 
single step through multiple instructions easily.

Examples

Defaults
None.

Related Commands
None.

ST – Read Stimulus File

Syntax
ST filename

Description
This command inserts specified values into specified pins or registers at a 
specified simulation step or time. The specified values, pins/registers and 
steps are defined in a text file called a stimulus file. Stimulus can be injected 
either according to step or time. See instruction ‘IP’ for details.

The stimulus file allows you to schedule bit manipulation by forcing MPSIM to 
drive given pins to given values at a specified input step.

MPSIM Command Result

% SS 01FF MPSIM resets the simulator code by executing 
the reset address (PIC16C54 and PIC16C55).

% SS MPSIM executes the line of code at the PCP.

% SS 20 MPSIM executes the line of code at address 20 
(in the current radix).

% SS LOOP MPSIM executes the line of code at the label 
LOOP.



  1995 Microchip Technology Inc. DS30027I - page 93

Chapter 5. MPSIM Commands

The ST command reads the stimulus file into MPSIM. When you execute a file 
with the E command, each time it looks for input, it reads the next step in the 
stimulus file.

The first line of stimulus file always consists of column headings. It lists first 
the word “STEP,” followed by the pins that are to be manipulated. The data 
below STEP represents the object file’s input request occurrence. The data 
below each pin name is the input value. You may enter comments at the end 
of a line by preceding it with an exclamation mark (!).

The following example illustrates the stimulus file format:

Other notes on the format of stimulus file:

• the number of spaces separating columns is irrelevant

• the step count must be in decimal

Examples

Defaults
The default injection point is “step”. The default file extension is ‘.STI’.

Related Commands
IP

TA – Trace Address

Syntax
TA [address1,address2]

Description
This command sets the trace to print only those instructions located between 
address1 and address2. If you don’t specify address1 and address2, MPSIM 
uses the full memory.

STEP RA0 RA1 ! These are I/O pin names

8 1 0

16 0 1 ! followed by values

24 1 1

MPSIM Command Result

% ST SAMPLE.STI MPSIM reads the specified stimulus file. 
Upon execution, it will retrieve input as 
designated in this file.



MPSIM USER’S GUIDE

DS30027I - page 94   1995 Microchip Technology Inc.

Examples

Defaults
Address range defaults to all of memory.

Related Commands
TC, TF, TR

TC – Trace Instructions

Syntax
TC [#instructions]

Description
This command traces the next #instructions instructions, displaying the 
instructions if they are valid. If you don’t supply the #instructions, the 
trace continues indefinitely until encountering a breakpoint or until you press 
any key.

Examples

Defaults
None.

Related Commands
TA, TF, TR

MPSIM Command Result

% TA main, call_m MPSIM will print/display only those 
instructions between main and call_m. 

MPSIM Command Result

% TC 3 Trace the next three instructions.



  1995 Microchip Technology Inc. DS30027I - page 95

Chapter 5. MPSIM Commands

TF – Trace to File/Printer

Syntax
TF [filename | Prn]

Description
This command opens or closes a file for writing the trace, or prints the trace. If 
you enter PRN as an argument, MPSIM prints the trace to the default printer. If 
you supply filename, MPSIM opens that file, if you don’t, MPSIM closes any 
currently opened output trace file.

You must use the TF command BEFORE starting the trace.

Examples

Defaults
None.

Related Commands
TA, TC, TR

TR – Trace Register

Syntax
TR register [,min_val,max_val]

Description
This command sets the file register trace. If you don’t supply any parameters, 
MPSIM traces any file register. If you specify register, it traces that register. If 
you also specify min_val and max_val, it performs the trace only if the value of 
the specified register lies between min_val and max_val.

MPSIM Command Result

% TF Close the output trace file.

% TF PRN Print the trace to the default printer.

% TF SAMPLE.TRC Open SAMPLE.TRC and write the trace to it.



MPSIM USER’S GUIDE

DS30027I - page 96   1995 Microchip Technology Inc.

Examples

Defaults
None.

Related Commands
TA, TC, TF

TY – Change View Screen

Syntax
TY FileReg,radix,#digits

Description
This command changes the formatting of the existing viewscreen. (If the 
designated signal isn’t in the viewscreen, MPSIM gives a warning.)

The radix can be hexadecimal, octal, decimal or binary, designated by X, O, 
D or B, respectively.

#digits is the number of spaces to reserve for this variable at display time.

Examples

Defaults
None.

Related Commands
AD, NV, V

MPSIM Command Result

% TR Traces all registers.

% TR W Traces the W register.

% TR W, 2, 7 Traces the W register when its value falls 
between 2 and 7 (in the current radix).

MPSIM Command Result

% TY RTCC,B,1 RTCC I/O pin displays in binary, using one digit.



  1995 Microchip Technology Inc. DS30027I - page 97

Chapter 5. MPSIM Commands

UR – Upload Registers

Syntax
UR {ALL|RAM|SFR}[filename]

Description
This command uploads the contents of registers into a DOS text file.

This command uploads file registers to “filename” (or to the default file name 
RAM.DAT if no file name is specified). The file will be in ASCII format and will 
consist of multiple lines in the following format:

BankNumber: FileRegisterNumber, Value

All values will be in hexadecimal radix and will begin in column one. For 
example, if ALL registers are to be uploaded to a file, the special-function 
registers would be print first, then all of the general-purpose registers would 
be printed:      

;Special Function Registers

0, 0x00, 0x00

0, 0x01, 0x09

0, 0x02, 0xB1

Examples

Defaults
File name default is RAM.DAT.

Related Commands
LR, IR

MPSIM Command Result

% UR ALL Upload all registers to file RAM.DAT

% UR SFR t.out Upload all special-function registers to the file 
“t.out”



MPSIM USER’S GUIDE

DS30027I - page 98   1995 Microchip Technology Inc.

V – View Screen

Syntax
V FileReg[,radix[,#digits]]

This command creates a new view screen that displays the named signal or 
register. Optionally, you may specify a radix different from the default and/or a 
number of digits.

V sets up the view screen. This means that the View command defines 
the variables (and respective formats) to constantly display on the screen. 
Once the view screen is set, it remains active until either an NV command or 
a V command sets up a new view screen. The format of this command
is relatively simple. FileReg displays in radix mode with #digits. Radix defaults 
to hexadecimal and #digits to 1. The radix can be B (binary), 
O (octal), X (hexadecimal) or D (decimal).

Examples

Defaults
The radix ordinarily defaults to hexadecimal, but you can change this default 
with the SR command. Digits defaults according to the table below:

Related Commands
AD, DV, NV, TY

MPSIM Command Result

% V F3,b,8 A view screen element is created with the 
following format:

F3: 00000000

% V RB0 A view screen element is created with the 
following format:

RB0: 00

Table 5.1  radix default widths

Radix Digits

X 2

B 8

O 3

D 2



  1995 Microchip Technology Inc. DS30027I - page 99

Chapter 5. MPSIM Commands

Verbose – Echo to Screen

Syntax
Verbose [ON|OFF]

Description
Prints a line to the screen (and to the optional trace file) when stimulus is 
injected into a pin. The command, without an argument, displays the current 
setting.

Examples

Defaults
None.

W – Work Register Display / Modify

Syntax
W

Description
This command displays and/or modifies the contents of W register.

Examples

Defaults
None.

Related Commands
None.

MPSIM Command Result

% VERBOSE ON Print to screen when stimuli are simulated.

MPSIM Command Result

% W

W=44: The value of W is 44 as the following message 
shows.

W=44:00 Change the value by entering a different value 
after the ‘:’ prompt.

The W register now has a value of 0.



MPSIM USER’S GUIDE

DS30027I - page 100   1995 Microchip Technology Inc.

WP – Watchdog Timer Period

Syntax
WP {1 | . . . | 128}

Description
Sets watchdog timer time-out period in milliseconds. With no parameters, 
displays current setting.

Examples

Defaults
“Normal” period for selected Microcontroller.

Related Commands
None

ZM – Zero the Program Memory

Syntax
ZM address1,address2

Description
This command zeroes the program memory from address1 to address2. 
address1 must less than address2 and both must be valid program 
memory addresses.

Examples

Defaults
None.

Related Commands
None.

MPSIM Command Result

% WP Display current period

% WP 10 WDT period set to 10 ms.

MPSIM Command Result

% ZM 0, 1F Program memory from 0 to 1F is zeroed.



  1995 Microchip Technology Inc. DS30027I - page 101

Chapter 5. MPSIM Commands

ZP – Zero the Patch Table

Syntax
ZP

Description
This command clears the patch table. Clears the patch table and resets it to 
no patches made. Any changes made to the object code are unaffected. 
Thus, the object code cannot be restored to the original.

Examples

Defaults
None.

Related Commands
O, RA, RP

ZR – Zero the Registers

Syntax
ZR

Description
This command sets all of the file registers to zero. Care should be taken with 
this instruction since it will zero the lower 8 bits of F2 (PC). An RS command 
should follow the ZR command to ensure the PC is set the expected reset 
value.

Examples

Defaults
None.

Related Commands
DR, RS, SE

MPSIM Command Result

% ZP Patch table cleared.

MPSIM Command Result

% ZR All registers are zeroed. 



MPSIM USER’S GUIDE

DS30027I - page 102   1995 Microchip Technology Inc.

ZT – Zero the Elapsed Time Counter

Syntax
ZT

Description
This command zeros the elapsed time counter.

Examples

Defaults
None.

Related Commands
RE, RS

MPSIM Command Result

% ZT The elapsed time counter resets to zero.



 



 

 1995 Microchip Technology Inc. DS30027I - page 103

 

Appendix A.   Troubleshooting Guide

 

Introduction

 

This Appendix consists of the following sections:

• Solutions to common problems

• The three types of messages generated by MPSIM, grouped by severity 
and their possible causes and solutions. Messages have been divided 
into the following groups:

• Informative Messages

• Warning Messages

• Error Messages

 

Solutions to Some Common Problems

 

Problem 1:

 

I keep getting strange error messages like “stack 
underflow” or “Illegal Opcode” when single-stepping 
through or executing my code.

 

Solution 1:

 

Check to make sure that the processor type you selected 
in MPSIM is the same as the processor type you 
selected when you assembled your code. This is 
especially important when simulating the members of the 
PIC16CXX or PIC17CXX family since the object code for 
them is different from the PIC16C5X, and the default 
processor type for the simulator is the PIC16C54.

 

Problem 2:

 

When I am trying to step through my code, MPSIM 
seems to execute an instruction different from the one 
that is displayed in the command area.

 

Solution 2:

 

Check to make sure that you loaded your code into the 
simulator in the same format that assembled it. For 
example, if you assembled your code and didn't specify 
an output format, your hex file will be in INHX8M format. 
If you then load your code into the simulator in INHX8S 
format, the simulator will behave strangely. 

 

Problem 3:

 

MPSIM does not perform indirect addressing correctly.

 

Solution 3:

 

Check to make sure that you do not have your indirect 
addr register defined as the label “F0” in your source file. 
There is a symbol-table conflict when you define your 
label as such. Rename the “F0” label in your source file 
to “IND0” or any other label.

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 104

 



 

 1995 Microchip Technology Inc.

 

Problem 4:

 

The W register does not update on my screen.

 

Solution 4:

 

You have redefined W in your source file to be equal to 
zero, and MPSIM now treats W as file register 0. Change 
the label in your source file to “Wreg” or something 
similar.



 



 

 1995 Microchip Technology Inc. DS30027I - page 105

 

Appendix A. Troubleshooting Guide

Messages

 

Informative Messages

 

Address Break After

 

Cause: The breakpoint mode has been set to break after the 
instruction has been executed.

 

Break at Address

 

Cause: A breakpoint has been encountered and execution has 
stopped.

 

Break at Register

 

Cause: A break on register condition has been encountered and 
execution has stopped.

 

Interrupt at Address

 

Cause: Execution has stopped at the indicated address due to a user 
keyboard interrupt.

 

Listing File Loaded

 

Cause: MPSIM found and read filename.LST

 

No Symbols Defined!

 

Cause: The user has requested a list of all symbols when no symbols 
had been defined.

 

Object Code Written to Disk

 

Cause: MPSIM successfully dumped program memory to the named 
object file.

 

Original Source Restored

 

Cause: MPSIM has restored the source to its original form upon user 
request.

 

Out of Memory, Not all Source Lines Loaded

 

Cause: MPSIM has exhausted free memory while trying to load the 
listing file.

 

Processor Reset

 

Cause: MPSIM has reset the processor due to a user request.

 

Symbol Table Loaded

 

Cause: MPSIM has found and read filename.SYM.

 

Trace File is Closed

 

Cause: MPSIM has successfully closed the trace file.

 

Trace File is Open

 

Cause: MPSIM has successfully opened the trace file.



 

MPSIM USER’S GUIDE

 

DS30027I - page 106

 



 

 1995 Microchip Technology Inc.

 

Verbose is OFF

 

Cause: Verbose mode is currently OFF, extended user messages will 
not be displayed.

 

Verbose is ON

 

Cause: Verbose mode is currently ON, extended user messages will 
be displayed.

 

Watchdog Timer Disabled

 

Cause: MPSIM will not respond to watchdog timer time-outs.

 

Watchdog Timer Enabled

 

Cause: MPSIM will respond to watchdog timer time-outs.

 

Warning Messages

 

Address2 < Address1

 

Cause: When entering a starting and ending address for a command, 
the ending address is greater than the ending address.

Cure: The starting address must be less than or equal to the ending 
address.

 

Arg X out of Range LABEL

 

Cause: You have entered a operand that is out of range of the 
specified instruction.

Cure: Review the instruction syntax and re-enter.

 

Attempt to Read Nonexistent File Register

 

Cause: Your object code has attempted to read a file register that 
does not exist in the PIC16/17 Microcontroller you have 
specified.

Cure: Set you PIC16/17 Microcontroller type accordingly.

 

Attempt to Write Nonexistent File Register

 

Cause: Your object code has attempted to read a file register that 
does not exist in the PIC16/17 Microcontroller you have 
specified.

Cure: Set your PIC16/17 Microcontroller type accordingly.

 

Bad Break Value

 

Cause: While defining a register breakpoint, you have specified a 
break value that is either unrecognized in the default radix or 
is out of range for the file register.

Cure: Ensure the value is valid in the current radix and not out of 
range of the file register.



 



 

 1995 Microchip Technology Inc. DS30027I - page 107

 

Appendix A. Troubleshooting Guide

 

Bad Count

 

Cause: You have entered a break count that is unrecognized in the 
current radix.

Cure: Ensure that the value is correct in the current radix.

 

Bad Cycle Length

 

Cause: You have entered a cycle length that is invalid or 
unrecognizable.

Cure: Re-enter the cycle length.

 

Bad End Address

 

Cause: You have entered an ending address that is out of memory 
bounds or unrecognizable in the current radix.

Cure: Ensure that the value is valid in the current radix and re-enter.

 

Bad Filename

 

Cause: The file name you entered was not recognizable as a DOS 
file name.

Cure: Ensure the file name conforms to DOS naming standards.

 

Bad Max. Value

 

Cause: This maximum value you entered is not recognizable in the 
current radix.

Cure: Ensure the value is valid in the current radix and re-enter.

 

Bad Min. Value

 

Cause: This minimum value you entered is not recognizable in the 
current radix.

Cure: Ensure the value is valid in the current radix and re-enter.

 

Bad Opcode

 

Cause: While attempting to search program memory for a specified 
opcode, the opcode you entered is unrecognizable in the 
current radix.

Cure: Ensure the opcode is valid in the current radix and re-enter.

 

Bad Option

 

Cause: The option you supplied to the V command was not valid.

Cure: Valid options are on and off. Use on of the valid options.

 

Bad Signal Value

 

Cause: While attempting to modify an I/O pin’s value, you have 
entered a value that is unrecognizable in the current radix.

Cure: Re-enter the value ensuring it is valid in the current radix.



 

MPSIM USER’S GUIDE

 

DS30027I - page 108

 



 

 1995 Microchip Technology Inc.

 

Bad Value

 

Cause: You have entered a value that is out of range of the file 
register or unrecognized in the current radix.

Cure: Ensure the value is valid in the current radix and in range for 
the file register.

 

Bad Width

 

Cause: The number you specified as the width of a view screen 
element was not recognized.

Cure: Ensure the width is a valid number in the current radix.

 

Can only Break on File Registers or Addresses

 

Cause: You have attempted to set a break point on an I/O pin.

Cure: Break points on I/O pins are disallowed.

 

Cannot Add Symbol to Symbol Table

 

Cause: Due to memory constraints, MPSIM cannot add the specified 
symbol to the symbol table.

Cure: Increase the amount of free memory before entering MPSIM.

 

Cannot Find Command File

 

Cause: MPSIM cannot find the command file you specified.

Cure: Ensure that the file is present in the path that you specified in 
the command.

 

Cannot Find Command File (MPSIM.jrn)

 

Cause: MPSIM cannot find the old journal file.

Cure: If MPSIM.jrn was not present in the current directory, this 
message is informational only. If the file is present, this may 
signal more serious errors with your disk.

 

Cannot Find List File

 

Cause: MPSIM cannot find the list file with the same name as the hex 
file plus the .LST extension.

Cure: Ensure you have a list file in the same directory as the hex file 
you specified.

 

Cannot Find Symbol File

 

Cause: MPSIM cannot find the symbol file with the same name as 
the hex file plus the .SYM extension.

Cure: Ensure you have a symbol file in the same directory as the 
hex file you specified.

 

Cannot Open Trace File

 

Cause: MPSIM cannot open the file you specified. This may be 
caused by any number of DOS errors.



 



 

 1995 Microchip Technology Inc. DS30027I - page 109

 

Appendix A. Troubleshooting Guide

 

Cure: Ensure that the file you specified doesn’t exist and is read-
only, or you have exhausted the number of DOS file handles.

 

Cannot Parse Filename

 

Cause: The file name you entered was not recognizable as a DOS 
file name.

Cure: Ensure the file name conforms to DOS naming standards.

 

Cannot Search for an IO Pin or Status Bit

 

Cause: You have attempted to search program memory for an 
instruction modifying an I/O pin or a status bit.

Cure: This operation is not supported.

 

Cannot Trace an IO Pin or Status Bit

 

Cause: You have attempted to set a trace on an I/O pin or Status Bit.

Cure: This operation is not supported.

 

File Symbol does not Match Page at PC=XXX

 

Cause: MPSIM has detected a page mismatch between the file 
symbol and the page select bits in the FSR.

Cure: This is a software error, your code needs to be fixed.

 

Invalid Filename

 

Cause: The file name you entered was not recognizable as a DOS 
file name.

Cure: Ensure the file name conforms to DOS naming standards.

 

Illegal Number of Arguments

 

Cause: You have entered the wrong number of arguments for the 
command.

Cure: Supply all required arguments for the command.

 

Illegal Radix

 

Cause: You have given a radix modifier that is not recognized.

Cure: Valid radix modifiers are X, D, O and B. Use one of the valid 
types.

 

Missing Instruction

 

Cause: You have told MPSIM to assemble an instruction, but did not 
supply the instruction.

Cure: Re-enter the command with the desired instruction.

 

No Breaks Found Involving

 

Cause: While trying to delete a register breakpoint, you have 
specified a file register that has no associated break point.

Cure: Ensure that a breakpoint for the specified file register has 
been defined via the DB command.



 

MPSIM USER’S GUIDE

 

DS30027I - page 110

 



 

 1995 Microchip Technology Inc.

 

No Object Code Loaded

 

Cause: MPSIM cannot open the object file and as a result cannot 
load the object code.

Cure: Ensure that the file name you specified is present in the 
directory you specified.

 

Opcode can only be used in PIC16C55/57 Mode

 

Cause: MPSIM has tried to execute an instruction that is valid only for 
the PIC16C55 or PIC16C57. Most likely a TRIS 7 instruction.

Cure: Your Microcontroller type is not set properly. Refer to the P 
command.

 

Out of Memory

 

Cause: While defining a register breakpoint, MPSIM has exhausted 
free memory.

Cure: Increase the amount of free memory before entering MPSIM 
or rename the list file so that MPSIM cannot find it.

 

Stack Overflow

 

Cause: You have executed one too many RETLW instructions for the 
contents of the Microcontroller stack.

Cure: This is a software error, your code needs to be fixed.

 

Stack Underflow

 

Cause: You have executed one too many CALL instructions for the 
size of the Microcontroller stack.

Cure: This is a software error, your code needs to be fixed.

 

Start Address Exceeds End Address

 

Cause: When entering a starting and ending address for a command, 
the ending address is greater than the ending address.

Cure: The starting address must be less than or equal to the ending 
address.

 

Symbol Already Exists

 

Cause: You have attempted to define a symbol that already exists.

Cure: Use a different symbol name.

 

Too Many Arguments

 

Cause: You have entered too many arguments for the command.

Cure: Review the common syntax.

 

Unable to Open Object File

 

Cause: MPSIM cannot open the object file specified.

Cure: Ensure that the file is present in the directory you specified.



 



 

 1995 Microchip Technology Inc. DS30027I - page 111

 

Appendix A. Troubleshooting Guide

 

Undefined Symbol

 

Cause: You have attempted to delete a nonexistent symbol.

Cure: Ensure that the symbol is defined. Symbols are case 
sensitive. If you used the case insensitivity switch in the 
assembler, all symbols have been mapped to uppercase.

 

Uninitialized Memory Location Executed

 

Cause: MPSIM has attempted to execute a memory location that 
does not have any object code loaded.

Cure: Ensure that there is object code loaded and your program is 
not running amuck.

 

Unknown Break Mode

 

Cause: You have specified a break mode that is unrecognized to 
MPSIM.

Cure: Valid break modes are before and after. Use one of the valid 
break modes.

 

Unknown File Format

 

Cause: MPSIM has tried to read in an object file that is does not 
recognize.

Cure: Ensure that the file you specified is a valid object file in the 
format you specified.

 

Unknown Instruction XXX

 

Cause: You have told MPSIM to assemble an instruction which is not 
a valid instruction.

Cure: Re-enter the instruction in valid mnemonics.

 

Unknown Opcode XXX

 

Cause: There is an invalid opcode in your object file. 

Cure: Ensure that you have loaded your object file in the correct 
format. Default is INHX16.

 

Unknown Operator

 

Cause: While defining a register breakpoint, you have used an 
unrecognized logical operator.

Cure: Valid operators are <, >, <=, >=, =, !=. Use one of the valid 
operators.

 

Unknown Radix

 

Cause: You have attempted to modify the default radix to a value that 
is unrecognized by MPSIM.

Cure: Valid radix values are X, D and O. Use one of the valid 
values.



 

MPSIM USER’S GUIDE

 

DS30027I - page 112

 



 

 1995 Microchip Technology Inc.

 

Unknown Symbol Type

 

Cause: While attempting to define a new symbol, you have entered a 
symbol type that is unrecognized by MPSIM.

Cure: Valid symbol types are F, L, K and B. Use one of the valid 
symbol types.

 

Use SE Command to Modify IO Pins

 

Cause: You have attempted to use the F command to modify an I/O 
pin.

Cure: Use the SE command.

 

Value Out of Range

 

Cause: You have specified a value that is out of range or 
unrecognized in the current radix.

Cure: Ensure that the value is valid in the current radix and valid for 
the current operation.

 

View Item not Found

 

Cause: You have attempted to delete or modify a nonexistent view 
screen element.

Cure: Ensure that the element is present on the view screen. View 
screen elements are case-sensitive.

 

ViewScreen is Full

 

Cause: You have attempted to add an element to the view screen 
when there is no more room on the screen.

Cure: Since the view screen is static in this version, there is no 
work-around.

 

WDT Time-out

 

Cause: The watchdog timer has timed out.

Cure: Ensure the settings for the WDT are correct and your 
software resets the WDT appropriately.

 

XXX is not an IO Pin

Cause: You have tried to use the SE command to modify a label that 
is not an I/O pin.

Cure: Use the F command to modify file registers, status bits and 
the stack.



  1995 Microchip Technology Inc. DS30027I - page 113

Appendix A. Troubleshooting Guide

Error Messages
Bad Stimulus (Line X)

Cause: MPSIM has found a stimulus value other that zero or one.

Cure: All pin stimuli must be either zero or one.

Cannot Delete Old Journal File

Cause: The file MPSIM.JRN has been read protected.

Cure: If you intended for the file to be read protected then do not 
worry about this error otherwise read enable the file.

Cannot Find Heading Line in Stimulus File

Cause: MPSIM cannot find the heading line in the stimulus file.

Cure: Ensure that there is a line in the file which begins with STEP.

Cannot Map Stimulus, Symbol Conflict XXX

Cause: MPSIM has encountered two column headings that are 
identical.

Cure: Ensure your column headings are correct.

Cannot Open File for Input XXX

Cause: MPSIM cannot open the specified file for reading.

Cure: Either the file does not exist or the file is read-only.

Cannot Open Journal File

Cause: MPSIM cannot open the old journal file.

Cure: The file MPSIM.JRN has been read protected, change the 
DOS attribute.

Cannot Update Journal File

Cause: MPSIM cannot update the journal file with the new 
commands for this session.

Cure: Either the old MPSIM.JRN cannot be deleted or the new 
journal file does not exist. Contact your local FAE.

Duplicate Symbol in Symbol File

Cause: MPSIM has encountered a symbol in the symbol file that has 
already been defined.

Cure: Delete the duplicate reference. If MPSIM finds this error it will 
not continue to read the symbol file.

First Heading in Stimulus File MUST be STEP

Cause: The line that MPSIM interpreted as the heading line did not 
begin with STEP.

Cure: Make sure all comment lines begin with ‘!’ and the heading 
line begins with STEP.



MPSIM USER’S GUIDE

DS30027I - page 114   1995 Microchip Technology Inc.

Out of Memory, Cannot Create Event Calendar

Cause: MPSIM exhausted free memory while trying to create the 
event calendar.

Cure: Increase the amount of free memory before invoking MPSIM.

Out of Memory, Cannot Create Event (Line X)

Cause: MPSIM exhausted free memory while trying to create an 
event.

Cure: Increase the amount of free memory before invoking MPSIM.

Out of Memory During Build of Break

Cause: MPSIM exhausted free memory while trying to define a file 
register breakpoint.

Cure: Increase the amount of free memory before invoking MPSIM.

Stimulus Data does not Match Headings (Line X)

Cause: MPSIM has found a line that has too few or too many data 
points to match the column headings.

Cure: Ensure each data line has one data point for each column 
heading.

Symbol File does not Match Hex File

Cause: You have tried to load a symbol file that was not generated for 
the current hex file.

Cure: If you intended to load the symbol file, the embedded file 
name must match the file name of the symbol file.

Symbol File is Corrupt

Cause: MPSIM has encountered some unexpected formatting in the 
symbol file.

Cure: Regenerate the symbol file.

Symbol File Sync Error

Cause: MPSIM has gotten lost while trying to parse the symbol file. 
Most likely the symbol file is corrupt.

Cure: Regenerate the symbol file.

Too Many Headings in Stimulus File (MAX=40)

Cause: The stimulus file has a limit of 40 headings, enough for each 
I/O pin.

Cure: If there is a need for more headings, contact your local FAE.

Unknown Command

Cause: MPSIM does not recognize the command you entered.

Cure: Refer to the command summary for valid commands.



  1995 Microchip Technology Inc. DS30027I - page 115

Appendix A. Troubleshooting Guide

Unexpected EOF in Stimulus File

Cause: While reading the stimulus file, MPSIM encountered a line 
that did not have the proper number of data points.

Cure: Ensure that all data lines have the correct number of data 
points.

Unknown File Register X

Cause: MPSIM does not recognize the file register as an argument to 
the instruction.

Cure: Re-enter the mnemonic with a valid file register.

Unknown Option X

Cause: MPSIM does not recognize the command line option X.

Cure: Refer to the section on command line arguments.

Unknown Opcode (X)

Cause: MPSIM tried to execute an opcode that is not a valid opcode.

Cure: Ensure you loaded the object file in the correct format. 
INHX16 and INHX8M have different byte orders.



MPSIM USER’S GUIDE

DS30027I - page 116   1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 117

 

Appendix B.   Sample File Listings

 

MPSIM.INI

 

SR X
ZP
ZR
ZT
RE
V W,X,2
AD F1,X,2
AD F2,X,3
AD F3,X,2
AD F4,X,2
AD F5,X,2
AD F6,X,2
AD F7,X,2
RS

 

PIC16C5X.INC

 

LIST
; P16C5X.INC  Standard Header File, Version 2.0     Microchip Technology, Inc.
NOLIST
; This header file defines configurations, registers, and other useful bits of
; information for the 16C5X microcontrollers.  These names are taken to match 
; the data sheets as closely as possible.  The microcontrollers included
; in this file are:
;    16C54
;    16C54A
;    16C55
;    16C56
;    16C57
;    16C58A
; There is one group of symbols that is valid for all microcontrollers.  
; Each microcontroller in this family also has its own section of special 
; symbols.  Note that the processor must be selected before this file is 
; included.  The processor may be selected the following ways:
;       1. Command line switch:
;               C:\ MPASM MYFILE.ASM /P16C54A
;       2. LIST directive in the source file
;               LIST   P=16C54A
;       3. Processor Type entry in the MPASM full-screen interface
;==========================================================================
;
;       Generic Definitions
;
;==========================================================================
   W                            EQU     H’0000’
   F                            EQU     H’0001’
;----- Register Files -----------------------------------------------------
   CBLOCK               H’0000’
      INDF
      TMR0
      PCL
      STATUS
      FSR
      PORTA
      PORTB

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 118

 



 

 1995 Microchip Technology Inc.

 

   ENDC
;----- STATUS Bits --------------------------------------------------------
   PA2                          EQU     H’0007’
   PA1                          EQU     H’0006’
   PA0                          EQU     H’0005’
   NOT_TO                       EQU     H’0004’
   NOT_PD                       EQU     H’0003’
   Z                            EQU     H’0002’
   DC                           EQU     H’0001’
   C                            EQU     H’0000’
;----- OPTION Bits --------------------------------------------------------
   T0CS                         EQU     H’0005’
   T0SE                         EQU     H’0004’
   PSA                          EQU     H’0003’
   PS2                          EQU     H’0002’
   PS1                          EQU     H’0001’
   PS0                          EQU     H’0000’
;==========================================================================
;
;       Processor-dependent Definitions
;
;==========================================================================
 IFDEF __16C54
   #define __CONFIG_0
 ENDIF
 IFDEF __16C54A
   #define __CONFIG_0
 ENDIF
 IFDEF __16C55
   ; Register Files
      PORTC                     EQU     H’0007’
   #define __CONFIG_0
 ENDIF
 IFDEF __16C56
   #define __CONFIG_0
 ENDIF
 IFDEF __16C57
   ; Register Files
      PORTC                     EQU     H’0007’
   #define __CONFIG_0
 ENDIF
 IFDEF __16C58A
   #define __CONFIG_1
 ENDIF

;==========================================================================
;
;       Configuration Bits
;
;==========================================================================
 IFDEF __CONFIG_0
   _CP_ON                       EQU     H’0FF7’
   _CP_OFF                      EQU     H’0FFF’
   _WDT_ON                      EQU     H’0FFF’
   _WDT_OFF                     EQU     H’0FFB’
   _LP_OSC                      EQU     H’0FFC’
   _XT_OSC                      EQU     H’0FFD’
   _HS_OSC                      EQU     H’0FFE’
   _RC_OSC                      EQU     H’0FFF’
   ;#undefine __CONFIG_0
 ENDIF

 IFDEF __CONFIG_1
   _CP_ON                       EQU     H’0007’
   _CP_OFF                      EQU     H’0FFF’
   _WDT_ON                      EQU     H’0FFF’



 



 

 1995 Microchip Technology Inc. DS30027I - page 119

 

Appendix B. Sample File Listings

 

   _WDT_OFF                     EQU     H’0FFB’
   _LP_OSC                      EQU     H’0FFC’
   _XT_OSC                      EQU     H’0FFD’
   _HS_OSC                      EQU     H’0FFE’
   _RC_OSC                      EQU     H’0FFF’
   ;#undefine __CONFIG_1
 ENDIF
LIST

 

PIC16CXX.INC

 

LIST
; P16CXX.INC  Standard Header File, Version 2.0     Microchip Technology, Inc.
NOLIST
; This header file defines configurations, registers, and other useful bits of
; information for the 16CXX microcontrollers.  These names are taken to match 
; the data sheets as closely as possible.  The microcontrollers included
; in this file are:
;    16C61
;    16C620
;    16C621
;    16C622
;    16C64
;    16C65
;    16C71
;    16C73
;    16C74
;    16C83
;    16C84
;    16C84A
; There is one group of defines that is valid for all microcontrollers.  
; Each microcontroller in this family also has its own section of special 
; defines.  Note that the processor must be selected before this file is 
; included.  The processor may be selected the following ways:
;       1. Command line switch:
;               C:\ MPASM MYFILE.ASM /P16C71
;       2. LIST directive in the source file
;               LIST   P=16C71
;       3. Processor Type entry in the MPASM full-screen interface
;==========================================================================
;
;       Generic Definitions
;
;==========================================================================
   W                            EQU     H’0000’
   F                            EQU     H’0001’
;----- Register Files------------------------------------------------------
   INDF                         EQU     H’0000’
   TMR0                         EQU     H’0001’
   PCL                          EQU     H’0002’
   STATUS                       EQU     H’0003’
   FSR                          EQU     H’0004’
   PORTA                        EQU     H’0005’
   PORTB                        EQU     H’0006’
   PCLATH                       EQU     H’000A’
   INTCON                       EQU     H’000B’
   OPTION_REG                   EQU     H’0081’
   TRISA                        EQU     H’0085’
   TRISB                        EQU     H’0086’
;----- INTCON Bits (except ADC/Periph) ------------------------------------
   GIE                          EQU     H’0007’
   T0IE                         EQU     H’0005’
   INTE                         EQU     H’0004’
   RBIE                         EQU     H’0003’
   T0IF                         EQU     H’0002’



 

MPSIM USER’S GUIDE

 

DS30027I - page 120

 



 

 1995 Microchip Technology Inc.

 

   INTF                         EQU     H’0001’
   RBIF                         EQU     H’0000’
;----- OPTION Bits --------------------------------------------------------
   NOT_RBPU                     EQU     H’0007’
   INTEDG                       EQU     H’0006’
   T0CS                         EQU     H’0005’
   T0SE                         EQU     H’0004’
   PSA                          EQU     H’0003’
   PS2                          EQU     H’0002’
   PS1                          EQU     H’0001’
   PS0                          EQU     H’0000’
;----- STATUS Bits --------------------------------------------------------
   IRP                          EQU     H’0007’
   RP1                          EQU     H’0006’
   RP0                          EQU     H’0005’
   NOT_TO                       EQU     H’0004’
   NOT_PD                       EQU     H’0003’
   Z                            EQU     H’0002’
   DC                           EQU     H’0001’
   C                            EQU     H’0000’
;==========================================================================
;
;       Processor-dependent Definitions
;
;==========================================================================
 IFDEF __16C61
   #define __CONFIG_0
 ENDIF
 IFDEF __16C620
   ;----- Register Files --------------------------------------------------
      PIR1                      EQU     H’000C’
      CMCON                     EQU     H’001F’
      PIE1                      EQU     H’008C’
      PCON                      EQU     H’008E’
      VRCON                     EQU     H’009F’
   #define __CONFIG_6
 ENDIF
 IFDEF __16C621
   ;----- Register Files --------------------------------------------------
      PIR1                      EQU     H’000C’
      CMCON                     EQU     H’001F’
      PIE1                      EQU     H’008C’
      PCON                      EQU     H’008E’
      VRCON                     EQU     H’009F’
   #define __CONFIG_4
 ENDIF
 IFDEF __16C622
   ;----- Register Files --------------------------------------------------
      PIR1                      EQU     H’000C’
      CMCON                     EQU     H’001F’
      PIE1                      EQU     H’008C’
      PCON                      EQU     H’008E’
      VRCON                     EQU     H’009F’
   #define __CONFIG_5
 ENDIF
 IFDEF __16C63
   ;----- Register Files --------------------------------------------------
      PORTC                     EQU     H’0007’
      PIR1                      EQU     H’000C’
      TMR1L                     EQU     H’000E’
      TMR1H                     EQU     H’000F’
      T1CON                     EQU     H’0010’
      TMR2                      EQU     H’0011’
      T2CON                     EQU     H’0012’
      SSPBUF                    EQU     H’0013’
      SSPCON                    EQU     H’0014’
      CCPR1L                    EQU     H’0015’



 



 

 1995 Microchip Technology Inc. DS30027I - page 121

 

Appendix B. Sample File Listings

 

      CCPR1H                    EQU     H’0016’
      CCP1CON                   EQU     H’0017’
      TRISC                     EQU     H’0087’
      PIE1                      EQU     H’008C’
      PCON                      EQU     H’008E’
      PR2                       EQU     H’0092’
      SSPADD                    EQU     H’0093’
      SSPSTAT                   EQU     H’0094’
   #define __CONFIG_2
 ENDIF
 IFDEF __16C64
   ;----- Register Files --------------------------------------------------
      PORTC                     EQU     H’0007’
      PORTD                     EQU     H’0008’
      PORTE                     EQU     H’0009’
      PIR1                      EQU     H’000C’
      TMR1L                     EQU     H’000E’
      TMR1H                     EQU     H’000F’
      T1CON                     EQU     H’0010’
      TMR2                      EQU     H’0011’
      T2CON                     EQU     H’0012’
      SSPBUF                    EQU     H’0013’
      SSPCON                    EQU     H’0014’
      CCPR1L                    EQU     H’0015’
      CCPR1H                    EQU     H’0016’
      CCP1CON                   EQU     H’0017’
      TRISC                     EQU     H’0087’
      TRISD                     EQU     H’0088’
      TRISE                     EQU     H’0089’
      PIE1                      EQU     H’008C’
      PCON                      EQU     H’008E’
      PR2                       EQU     H’0092’
      SSPADD                    EQU     H’0093’
      SSPSTAT                   EQU     H’0094’
   #define __CONFIG_2
 ENDIF
 IFDEF __16C65
   ;----- Register Files --------------------------------------------------
      PORTC                     EQU     H’0007’
      PORTD                     EQU     H’0008’
      PORTE                     EQU     H’0009’
      PIR1                      EQU     H’000C’
      PIR2                      EQU     H’000D’
      TMR1L                     EQU     H’000E’
      TMR1H                     EQU     H’000F’
      T1CON                     EQU     H’0010’
      TMR2                      EQU     H’0011’
      T2CON                     EQU     H’0012’
      SSPBUF                    EQU     H’0013’
      SSPCON                    EQU     H’0014’
      CCPR1L                    EQU     H’0015’
      CCPR1H                    EQU     H’0016’
      CCP1CON                   EQU     H’0017’
      RCSTA                     EQU     H’0018’
      TXREG                     EQU     H’0019’
      RCREG                     EQU     H’001A’
      CCPR2L                    EQU     H’001B’
      CCPR2H                    EQU     H’001C’
      CCP2CON                   EQU     H’001D’
      TRISC                     EQU     H’0087’
      TRISD                     EQU     H’0088’
      TRISE                     EQU     H’0089’
      PIE1                      EQU     H’008C’
      PIE2                      EQU     H’008D’
      PCON                      EQU     H’008E’
      PR2                       EQU     H’0092’
      SSPADD                    EQU     H’0093’



 

MPSIM USER’S GUIDE

 

DS30027I - page 122

 



 

 1995 Microchip Technology Inc.

 

      SSPSTAT                   EQU     H’0094’
      TXSTA                     EQU     H’0098’
      SPBRG                     EQU     H’0099’
   #define __CONFIG_2
 ENDIF
 IFDEF __16C71
   #define __ADC_CONFIG_0
   #define __CONFIG_0
 ENDIF
 IFDEF __16C73
   ;----- Register Files --------------------------------------------------
      PORTC                     EQU     H’0007’
      PIR1                      EQU     H’000C’
      PIR2                      EQU     H’000D’
      TMR1L                     EQU     H’000E’
      TMR1H                     EQU     H’000F’
      T1CON                     EQU     H’0010’
      TMR2                      EQU     H’0011’
      T2CON                     EQU     H’0012’
      SSPBUF                    EQU     H’0013’
      SSPCON                    EQU     H’0014’
      CCPR1L                    EQU     H’0015’
      CCPR1H                    EQU     H’0016’
      CCP1CON                   EQU     H’0017’
      RCSTA                     EQU     H’0018’
      TXREG                     EQU     H’0019’
      RCREG                     EQU     H’001A’
      CCPR2L                    EQU     H’001B’
      CCPR2H                    EQU     H’001C’
      CCP2CON                   EQU     H’001D’
      TRISC                     EQU     H’0087’
      PIE1                      EQU     H’008C’
      PIE2                      EQU     H’008D’
      PCON                      EQU     H’008E’
      PR2                       EQU     H’0092’
      SSPADD                    EQU     H’0093’
      SSPSTAT                   EQU     H’0094’
      TXSTA                     EQU     H’0098’
      SPBRG                     EQU     H’0099’
   #define __ADC_CONFIG_1
   #define __CONFIG_2
 ENDIF
 IFDEF __16C74
   ;----- Register Files --------------------------------------------------
      PORTC                     EQU     H’0007’
      PORTD                     EQU     H’0008’
      PORTE                     EQU     H’0009’
      PIR1                      EQU     H’000C’
      PIR2                      EQU     H’000D’
      TMR1L                     EQU     H’000E’
      TMR1H                     EQU     H’000F’
      T1CON                     EQU     H’0010’
      TMR2                      EQU     H’0011’
      T2CON                     EQU     H’0012’
      SSPBUF                    EQU     H’0013’
      SSPCON                    EQU     H’0014’
      CCPR1L                    EQU     H’0015’
      CCPR1H                    EQU     H’0016’
      CCP1CON                   EQU     H’0017’
      RCSTA                     EQU     H’0018’
      TXREG                     EQU     H’0019’
      RCREG                     EQU     H’001A’
      CCPR2L                    EQU     H’001B’
      CCPR2H                    EQU     H’001C’
      CCP2CON                   EQU     H’001D’
      TRISC                     EQU     H’0087’
      TRISD                     EQU     H’0088’



 



 

 1995 Microchip Technology Inc. DS30027I - page 123

 

Appendix B. Sample File Listings

 

      TRISE                     EQU     H’0089’
      PIE1                      EQU     H’008C’
      PIE2                      EQU     H’008D’
      PCON                      EQU     H’008E’
      PR2                       EQU     H’0092’
      SSPADD                    EQU     H’0093’
      SSPSTAT                   EQU     H’0094’
      TXSTA                     EQU     H’0098’
      SPBRG                     EQU     H’0099’
   #define __ADC_CONFIG_1
   #define __CONFIG_2
 ENDIF
 IFDEF __16C83
   ;----- Register Files --------------------------------------------------
      EEDATA                    EQU     H’0008’
      EEADR                     EQU     H’0009’
      EECON1                    EQU     H’0088’
      EECON2                    EQU     H’0089’
   #define __CONFIG_3
 ENDIF
 IFDEF __16C84
   ;----- Register Files --------------------------------------------------
      EEDATA                    EQU     H’0008’
      EEADR                     EQU     H’0009’
      EECON1                    EQU     H’0088’
      EECON2                    EQU     H’0089’
   #define __CONFIG_0
 ENDIF
 IFDEF __16C84A
   ;----- Register Files --------------------------------------------------
      EEDATA                    EQU     H’0008’
      EEADR                     EQU     H’0009’
      EECON1                    EQU     H’0088’
      EECON2                    EQU     H’0089’
   #define __CONFIG_3
 ENDIF
;==========================================================================
;
;       Configuration Bits
;
;==========================================================================
 IFDEF __CONFIG_0
   _CP_ON                       EQU     H’3FEF’
   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’
   ;#undefine __CONFIG_0
 ENDIF
 IFDEF __CONFIG_1
   _BODEN_ON                    EQU     H’3FFF’
   _BODEN_OFF                   EQU     H’3FBF’
   _CP_ON                       EQU     H’004F’
   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’



 

MPSIM USER’S GUIDE

 

DS30027I - page 124

 



 

 1995 Microchip Technology Inc.

 

   ;#undefine __CONFIG_1
 ENDIF
 IFDEF __CONFIG_2
   _CP_ALL                      EQU     H’3FCF’
   _CP_75                       EQU     H’3FDF’
   _CP_50                       EQU     H’3FEF’
   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’
   ;#undefine __CONFIG_2
 ENDIF
 IFDEF __CONFIG_3
   _CP_ON                       EQU     H’000F’
   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’
   ;#undefine __CONFIG_3
 ENDIF
 IFDEF __CONFIG_4
   _BODEN_ON                    EQU     H’3FFF’
   _BODEN_OFF                   EQU     H’3FBF’
   _CP_ALL                      EQU     H’00CF’
   _CP_50                       EQU     H’15DF’
   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’
   ;#undefine __CONFIG_4
 ENDIF
 IFDEF __CONFIG_5
   _BODEN_ON                    EQU     H’3FFF’
   _BODEN_OFF                   EQU     H’3FBF’
   _CP_ALL                      EQU     H’00CF’
   _CP_75                       EQU     H’15DF’
   _CP_50                       EQU     H’2AEF’
   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’
   ;#undefine __CONFIG_5
 ENDIF
 IFDEF __CONFIG_6
   _BODEN_ON                    EQU     H’3FFF’
   _BODEN_OFF                   EQU     H’3FBF’
   _CP_ON                       EQU     H’00CF’



 



 

 1995 Microchip Technology Inc. DS30027I - page 125

 

Appendix B. Sample File Listings

 

   _CP_OFF                      EQU     H’3FFF’
   _PWRTE_ON                    EQU     H’3FFF’
   _PWRTE_OFF                   EQU     H’3FF7’
   _WDT_ON                      EQU     H’3FFF’
   _WDT_OFF                     EQU     H’3FFB’
   _LP_OSC                      EQU     H’3FFC’
   _XT_OSC                      EQU     H’3FFD’
   _HS_OSC                      EQU     H’3FFE’
   _RC_OSC                      EQU     H’3FFF’
   ;#undefine __CONFIG_6
 ENDIF
;==========================================================================
;
;       More Bit Definitions
;
;==========================================================================
 IFDEF __ADC_CONFIG_0
   ;---- Register Files ---------------------------------------------------
      ADCON0                    EQU     H’0008’
      ADRES                     EQU     H’0009’
      ADCON1                    EQU     H’0088’
   ;---- Finish INTCON Definition -----------------------------------------
      ADIE                      EQU     H’0006’
   ;----- ADCON0 Bits -----------------------------------------------------
      ADCS1                     EQU     H’0007’
      ADCS0                     EQU     H’0006’
      CHS1                      EQU     H’0004’
      CHS0                      EQU     H’0003’
      GO                        EQU     H’0002’
      NOT_DONE                  EQU     H’0002’
      GO_DONE                   EQU     H’0002’
      ADIF                      EQU     H’0001’
      ADON                      EQU     H’0000’
   ;----- ADCON1 Bits -----------------------------------------------------
      PCFG1                     EQU     H’0001’
      PCFG0                     EQU     H’0000’
   ;#undefine __ADC_CONFIG_0
 ELSE
   ;---- Finish INTCON Definition -----------------------------------------
      PEIE                      EQU     H’0006’
 ENDIF
 IFDEF __ADC_CONFIG_1
   ;----- Register Files --------------------------------------------------
      ADRES                     EQU     H’001E’
      ADCON0                    EQU     H’001F’
      ADCON1                    EQU     H’009F’
   ;----- ADCON0 Bits -----------------------------------------------------
      ADCS1                     EQU     H’0007’
      ADCS0                     EQU     H’0006’
      CHS2                      EQU     H’0005’
      CHS1                      EQU     H’0004’
      CHS0                      EQU     H’0003’
      GO                        EQU     H’0002’
      NOT_DONE                  EQU     H’0002’
      GO_DONE                   EQU     H’0002’
      ADON                      EQU     H’0000’
   ;----- ADCON1 Bits -----------------------------------------------------
      PCFG2                     EQU     H’0002’
      PCFG1                     EQU     H’0001’
      PCFG0                     EQU     H’0000’
   ;----- PIE1 and PIR1 ADC Bits ------------------------------------------
      ADIE                      EQU     H’0006’
      ADIF                      EQU     H’0006’
   ;#undefine __ADC_CONFIG_1
 ENDIF
 IFDEF CCP1CON
   CCP1X                        EQU     H’0005’



 

MPSIM USER’S GUIDE

 

DS30027I - page 126

 



 

 1995 Microchip Technology Inc.

 

   CCP1Y                        EQU     H’0004’
   CCP1M3                       EQU     H’0003’
   CCP1M2                       EQU     H’0002’
   CCP1M1                       EQU     H’0001’
   CCP1M0                       EQU     H’0000’
 ENDIF
 IFDEF CCP2CON
   CCP2X                        EQU     H’0005’
   CCP2Y                        EQU     H’0004’
   CCP2M3                       EQU     H’0003’
   CCP2M2                       EQU     H’0002’
   CCP2M1                       EQU     H’0001’
   CCP2M0                       EQU     H’0000’
 ENDIF
 IFDEF CMCON
   C2OUT                        EQU     H’0007’
   C1OUT                        EQU     H’0006’
   CIS                          EQU     H’0003’
   CM2                          EQU     H’0002’
   CM1                          EQU     H’0001’
   CM0                          EQU     H’0000’
   ;----- PIE1 and PIR1 ADC Bits and Short Cuts ---------------------------
      CMIE                      EQU     H’0006’
      CMIF                      EQU     H’0006’
 ENDIF
 IFDEF EECON1
   EEIF                         EQU     H’0004’
   WRERR                        EQU     H’0003’
   WREN                         EQU     H’0002’
   WR                           EQU     H’0001’
   RD                           EQU     H’0000’
 ENDIF
 IFDEF PCON
   NOT_POR                      EQU     H’0001’
   NOT_BO                       EQU     H’0000’
 ENDIF
 IFDEF PIE1
   PSPIE                        EQU     H’0007’
   SSPIE                        EQU     H’0003’
   CCP1IE                       EQU     H’0002’
   TMR2IE                       EQU     H’0001’
   TMR1IE                       EQU     H’0000’
 ENDIF
 IFDEF PIR1
   PSPIF                        EQU     H’0007’
   SSPIF                        EQU     H’0003’
   CCP1IF                       EQU     H’0002’
   TMR2IF                       EQU     H’0001’
   TMR1IF                       EQU     H’0000’
 ENDIF
 IFDEF PIE2                                             ; Assumes PIE2 and PIR2
   CCP2IE                       EQU     H’0000’
   CCP2IF                       EQU     H’0000’
 ENDIF
 IFDEF RCSTA
   SPEN                         EQU     H’0007’
   RC9                          EQU     H’0006’
   NOT_RC8                      EQU     H’0006’
   RC8_9                        EQU     H’0006’
   SREN                         EQU     H’0005’
   CREN                         EQU     H’0004’
   FERR                         EQU     H’0002’
   OERR                         EQU     H’0001’
   RCD8                         EQU     H’0000’
   ;----- PIE1 and PIR1 RC Bits and Short Cuts ---------------------------
      RCIE                      EQU     H’0005’
      RBFL                      EQU     H’0005’



 



 

 1995 Microchip Technology Inc. DS30027I - page 127

 

Appendix B. Sample File Listings

 

 ENDIF
 IFDEF SSPCON
   WCOL                         EQU     H’0007’
   SSPOV                        EQU     H’0006’
   SSPEN                        EQU     H’0005’
   CKP                          EQU     H’0004’
   SSPM3                        EQU     H’0003’
   SSPM2                        EQU     H’0002’
   SSPM1                        EQU     H’0001’
   SSPM0                        EQU     H’0000’
 ENDIF
 IFDEF SSPSTAT
   D                            EQU     H’0005’
   I2C_DATA                     EQU     H’0005’
   NOT_A                        EQU     H’0005’
   NOT_ADDRESS                  EQU     H’0005’
   D_A                          EQU     H’0005’
   DATA_ADDRESS                 EQU     H’0005’
   P                            EQU     H’0004’
   I2C_STOP                     EQU     H’0004’
   S                            EQU     H’0003’
   I2C_START                    EQU     H’0003’
   R                            EQU     H’0002’
   I2C_READ                     EQU     H’0002’
   NOT_W                        EQU     H’0002’
   NOT_WRITE                    EQU     H’0002’
   R_W                          EQU     H’0002’
   READ_WRITE                   EQU     H’0002’
   UA                           EQU     H’0001’
   BF                           EQU     H’0000’
 ENDIF
 IFDEF T1CON
   T1CKPS1                      EQU     H’0005’
   T1CKPS0                      EQU     H’0004’
   T1OSCEN                      EQU     H’0003’
   T1INSYNC                     EQU     H’0002’
   TMR1CS                       EQU     H’0001’
   TMR1ON                       EQU     H’0000’
 ENDIF
 IFDEF T2CON
   TOUTPS3                      EQU     H’0006’
   TOUTPS2                      EQU     H’0005’
   TOUTPS1                      EQU     H’0004’
   TOUTPS0                      EQU     H’0003’
   TMR2ON                       EQU     H’0002’
   T2CKPS1                      EQU     H’0001’
   T2CKPS0                      EQU     H’0000’
 ENDIF
 IFDEF TRISE
   IBF                          EQU     H’0007’
   OBF                          EQU     H’0006’
   IBOV                         EQU     H’0005’
   PSPMODE                      EQU     H’0004’
   TRISE2                       EQU     H’0002’
   TRISE1                       EQU     H’0001’
   TRISE0                       EQU     H’0000’
 ENDIF
 IFDEF TXSTA
   CSRC                         EQU     H’0007’
   TX9                          EQU     H’0006’
   NOT_TX8                      EQU     H’0006’
   TX8_9                        EQU     H’0006’
   TXEN                         EQU     H’0005’
   SYNC                         EQU     H’0004’
   BRGH                         EQU     H’0002’
   TRMT                         EQU     H’0001’
   TXD8                         EQU     H’0000’



 

MPSIM USER’S GUIDE

 

DS30027I - page 128

 



 

 1995 Microchip Technology Inc.

 

   ;----- PIE1 and PIR1 TX Bits and Short Cuts ---------------------------
      TXIE                      EQU     H’0004’
      TXIF                      EQU     H’0004’
 ENDIF
 IFDEF VRCON
   VREN                         EQU     H’0007’
   VROE                         EQU     H’0006’
   VRR                          EQU     H’0005’
   VR3                          EQU     H’0003’
   VR2                          EQU     H’0002’
   VR1                          EQU     H’0001’
   VR0                          EQU     H’0000’
 ENDIF
LIST

 

PIC17CXX.INC

 

LIST
; P17CXX.INC  Standard Header File, Version 2.0     Microchip Technology, Inc.
NOLIST
; This header file defines configurations, registers, and other useful bits of
; information for the 17CXX microcontrollers.  These names are taken to match 
; the data sheets as closely as possible.  The microcontrollers included
; in this file are:
; 17C42
; 17C43
; 17C44
; There is one group of defines that is valid for all microcontrollers.  
; Each microcontroller in this family also has its own section of special 
; defines.  Note that the processor must be selected before this file is 
; included.  The processor may be selected the following ways:
;       1. Command line switch:
;               C:\ MPASM MYFILE.ASM /P17C42
;       2. LIST directive in the source file
;               LIST   P=17C42
;       3. Processor Type entry in the MPASM full-screen interface

;==========================================================================
;
;       Generic Definitions
;
;==========================================================================
   W                            EQU     H’0000’
   F                            EQU     H’0001’
   CBLOCK               H’0000’
      BANK0
      BANK1
      BANK2
      BANK3
   ENDC
;----- Register Files -----------------------------------------------------
   CBLOCK               H’0000’                 ; Bank 0
      INDF0
      FSR0      
      PCL       
      PCLATH
      ALUSTA
      T0STA
      CPUSTA
      INTSTA
      INDF1
      FSR1      
      WREG
      TMR0L
      TMR0H



 



 

 1995 Microchip Technology Inc. DS30027I - page 129

 

Appendix B. Sample File Listings

 

      TBLPTRL
      TBLPTRH
      BSR       
      PORTA
      DDRB      
      PORTB
      RCSTA
      RCREG
      TXSTA
      TXREG
      SPBRG
   ENDC
   CBLOCK               H’0010’                 ; Bank 1
      DDRC      
      PORTC
      DDRD      
      PORTD
      DDRE      
      PORTE
      PIR       
      PIE       
   ENDC
   CBLOCK               H’0010’                 ; Bank 2
      TMR1      
      TMR2      
      TMR3L
      TMR3H
      PR1       
      PR2       
      PR3L      
      PR3H      
   ENDC
   CBLOCK               H’0016’                 ; Bank 2 - alternate
      CAL1L
      CAL1H
   ENDC
   CBLOCK               H’0010’                 ; Bank 3
      PW1DCL
      PW2DCL
      PW1DCH
      PW2DCH
      CA2L      
      CA2H      
      TCON1
      TCON2
   ENDC
;----- ALUSTA Bits --------------------------------------------------------
   FS3                          EQU     H’0007’
   FS2                          EQU     H’0006’
   FS1                          EQU     H’0005’
   FS0                          EQU     H’0004’
   OV                           EQU     H’0003’
   Z                            EQU     H’0002’
   DC                           EQU     H’0001’
   C                            EQU     H’0000’
;----- CPUSTA Bits --------------------------------------------------------
   STKAV                        EQU     H’0005’
   GLINTD                       EQU     H’0004’
   NOT_TO                       EQU     H’0003’
   NOT_PD                       EQU     H’0002’
;----- INTSTA Bits --------------------------------------------------------
   PEIF                         EQU     H’0007’
   T0CKIF                       EQU     H’0006’
   T0IF                         EQU     H’0005’
   INTF                         EQU     H’0004’
   PEIE                         EQU     H’0003’
   T0CKIE                       EQU     H’0002’



 

MPSIM USER’S GUIDE

 

DS30027I - page 130

 



 

 1995 Microchip Technology Inc.

 

   T0IE                         EQU     H’0001’
   INTE                         EQU     H’0000’
;----- PIE Bits -----------------------------------------------------------
   RBIE                         EQU     H’0007’
   TMR3IE                       EQU     H’0006’
   TMR2IE                       EQU     H’0005’
   TMR1IE                       EQU     H’0004’
   CA2IE                        EQU     H’0003’
   CA1IE                        EQU     H’0002’
   TXIE                         EQU     H’0001’
   RCIE                         EQU     H’0000’
;----- PIR Bits -----------------------------------------------------------
   RBIF                         EQU     H’0007’
   TMR3IF                       EQU     H’0006’
   TMR2IF                       EQU     H’0005’
   TMR1IF                       EQU     H’0004’
   CA2IF                        EQU     H’0003’
   CA1IF                        EQU     H’0002’
   TXIF                         EQU     H’0001’
   RCIF                         EQU     H’0000’
;----- PORTA Bits ---------------------------------------------------------
   NOT_RBPUEQUH’0007’
   T0CKIEQUH’0001’
   INTEQUH’0000’
;----- RCSTA Bits ---------------------------------------------------------
   SPEN                         EQU     H’0007’
   RC9                          EQU     H’0006’
   NOT_RC8                      EQU     H’0006’
   RC8_9                        EQU     H’0006’
   SREN                         EQU     H’0005’
   CREN                         EQU     H’0004’
   FERR                         EQU     H’0002’
   OERR                         EQU     H’0001’
   RCD8                         EQU     H’0000’
;----- T0STA Bits --------------------------------------------------------
   INTEDG                       EQU     H’0007’
   T0SE                         EQU     H’0006’
   T0CS                         EQU     H’0005’
   T0PS3                        EQU     H’0004’
   T0PS2                        EQU     H’0003’
   T0PS1                        EQU     H’0002’
   T0PS0                        EQU     H’0001’
;----- TCON1 Bits ---------------------------------------------------------
   CA2ED1                       EQU     H’0007’
   CA2ED0                       EQU     H’0006’
   CA1ED1                       EQU     H’0005’
   CA1ED0                       EQU     H’0004’
   T16                          EQU     H’0003’
   TMR3CS                       EQU     H’0002’
   TMR2CS                       EQU     H’0001’
   TMR1CS                       EQU     H’0000’
;----- TCON2 Bits ---------------------------------------------------------
   CA2OVF                       EQU     H’0007’
   CA1OVF                       EQU     H’0006’
   PWM2ON                       EQU     H’0005’
   PWM1ON                       EQU     H’0004’
   CA1                          EQU     H’0003’
   NOT_PR3                      EQU     H’0003’
   CA1_PR3                      EQU     H’0003’
   TMR3ON                       EQU     H’0002’
   TMR2ON                       EQU     H’0001’
   TMR1ON                       EQU     H’0000’
;----- TXSTA Bits ---------------------------------------------------------
   CSRC                         EQU     H’0007’
   TX9                          EQU     H’0006’
   NOT_TX8                      EQU     H’0006’
   TX8_9                        EQU     H’0006’



 



 

 1995 Microchip Technology Inc. DS30027I - page 131

 

Appendix B. Sample File Listings

 

   TXEN                         EQU     H’0005’
   SYNC                         EQU     H’0004’
   TRMT                         EQU     H’0001’
   TXD8                         EQU     H’0000’
;==========================================================================
;
;       Configuration Bits - Generic
;
;==========================================================================
   _XMC_MODE                    EQU     H’FFBF’
   _MC_MODE                     EQU     H’FFEF’
   _MP_MODE                     EQU     H’FFFF’
   _WDT_NORM                    EQU     H’FFF3’
   _WDT_64                      EQU     H’FFF7’
   _WDT_256                     EQU     H’FFFB’
   _WDT_1                       EQU     H’FFFF’
   _LF_OSC                      EQU     H’FFFC’
   _RC_OSC                      EQU     H’FFFD’
   _XT_OSC                      EQU     H’FFFE’
   _EC_OSC                      EQU     H’FFFF’
;==========================================================================
;
;       Processor-dependent Definitions
;
;==========================================================================
 IFDEF __17C42
   ; Nothing else needs to be defined
   #define __CONFIG_0
 ENDIF
 IFDEF __17C43
   ;----- Register Files --------------------------------------------------
      PRODL                     EQU     H’0018’
      PRODH                     EQU     H’0019’
   #define __CONFIG_1
 ENDIF
 IFDEF __17C44
   ;----- Register Files --------------------------------------------------
      PRODL                     EQU     H’0018’
      PRODH                     EQU     H’0019’
   #define __CONFIG_1
 ENDIF
;==========================================================================
;
;       Configuration Bits - Specific
;
;==========================================================================
 IFDEF __CONFIG_0
   _PMC_MODE                    EQU     H’FFAF’
   ;#undefine __CONFIG_0
 ENDIF
 IFDEF __CONFIG_1
   _PMC_MODE                    EQU     H’00AF’
   ;#undefine __CONFIG_1
 ENDIF
LIST



 

MPSIM USER’S GUIDE

 

DS30027I - page 132

 



 

 1995 Microchip Technology Inc.

 

SAMPLE.ASM

 

;*******************************************************************
;                           SAMPLE.ASM
;                   8x8 Software Multiplier
;*******************************************************************
;
;   The 16 bit result is stored in 2 bytes
;
; Before calling the subroutine " mpy ", the multiplier should
; be loaded in location " mulplr ", and the multiplicand in
; " mulcnd " . The 16 bit result is stored in locations
; H_byte & L_byte.
;
;       Performance :
;                       Program Memory  :  15 locations
;                       # of cycles     :  71
;                       Scratch RAM     :   0 locations
;
;  This routine is optimized for code efficiency ( looped code )
;  For time efficiency code refer to "mult8x8F.asm" ( straight line code )
;*******************************************************************
;
        LIST    p=16C54 ; PIC16C54 is the target processor
mulcnd  equ     09      ; 8 bit multiplicand
mulplr  equ     10      ; 8 bit multiplier
H_byte  equ     12      ; High byte of the 16 bit result
L_byte  equ     13      ; Low byte of the 16 bit result
count   equ     14      ; loop counter
portb   equ     06      ; I/O register F6
STATUS  equ     03      ; STATUS register F3
CARRY   equ     0       ; Carry bit in status register
Same    equ     1       ; 
;
;
; *****************************         Begin Multiplier Routine
mpy_S   clrf    H_byte
        clrf    L_byte
        movlw   8
        movwf   count
        movf    mulcnd,w
        bcf     STATUS,CARRY    ; Clear the carry bit in the status Reg.
loop    rrf     mulplr
        btfsc   STATUS,CARRY
        addwf   H_byte,Same
        rrf     H_byte,Same
        rrf     L_byte,Same
        decfsz  count
        goto    loop
;
        retlw   0
;
;********************************************************************
;               Test Program
;*********************************************************************
start   clrw
        option
main    movf    portb,w
        movwf   mulplr          ; multiplier (in mulplr) = 05
        movf    portb,w
        movwf   mulcnd
;
call_m  call    mpy_S           ; The result is in locations F12 & F13
                               ; H_byte & L_byte
;
        goto    main



 



 

 1995 Microchip Technology Inc. DS30027I - page 133

 

Appendix B. Sample File Listings

 

;
        org     01FFh
        goto    start
;
     END

list p=16C64,r=HEX
org 0
symbol_name             equ 010
symbol100_name          equ 011
symbol1000_name         equ 012
symbol123456789A        equ 013
symbol123456789ABCDEF   equ 014
device1                 equ 032
statflag                equ 02e
movf 3,w        ; set up Timer 0
iorlw 020
movwf 3
movlw 0df
movwf 01
nop
movf 3,w        ; set up Timer 1
andlw 0df
movwf 3
movlw 011
movwf 010
movlw 0fe
movwf 0e
nop
movlw 04        ; set up Timer 2
movwf 012
movf 3,w
iorlw 020
movwf 3
movlw 6
movwf 012
movf 3,w
andlw 0df        
movwf 3
loop           nop
nop
nop                    
nop
nop
nop
nop
nop
nop
goto loop
END

 

SAMPLE.INI

 

LO SAMPLE
ST SAMPLE
SR X
ZP
ZR
ZT
RE
P  54
NV
AD mulcnd
AD mulplr
AD H_byte



 

MPSIM USER’S GUIDE

 

DS30027I - page 134

 



 

 1995 Microchip Technology Inc.

 

AD L_byte
AD count
AD portb
AD RB7,B,1
AD RB6,B,1
AD RB5,B,1
AD RB4,B,1
AD RB3,B,1
AD RB2,B,1
AD RB1,B,1
AD RB0,B,1
RS

 

SAMPLE.STI

 

! Stimulus file for SAMPLE.ASM

STEP      RB7   RB6   RB5   RB4   RB3   RB2   RB1   RB0   ! PortB Pins
3          0     0     0     0     1     0     0     1    !  9 x 5
5          0     0     0     0     0     1     0     1
65         0     0     0     0     1     0     1     0    ! 10 x 5
67         0     0     0     0     0     1     0     1
127        0     0     0     1     1     0     1     1    ! 27 x 3
129        0     0     0     0     0     0     1     1
191        0     0     0     1     0     0     0     1    ! 17 x 7
193        0     0     0     0     0     1     1     1
253        0     1     0     0     0     0     0     0    ! 64 x 63
255        0     0     1     1     1     1     1     1



 



 

 1995 Microchip Technology Inc. DS30027I - page 135

 

Appendix C.   Customer Support

 

Keeping Current with Microchip Systems

 

This chapter provides a brief discussion of the Microchip BBS general 
services available. Because the Microchip BBS is an evolving product, details 
of its operation are not described here. This chapter also describes the 
Microchip software release numbering scheme.

Microchip Technology supports the Microchip BBS as a service to its 
customers. The Microchip BBS contains the most recent information 
regarding Microchip systems products. Microchip endeavors at all times to 
provide quality service and fast responsiveness to users. To accomplish this, 
Microchip monitors the BBS several times a week for questions. Truly urgent 
issues should not be left with the BBS, but referred to your local distributor, 
sales office or FAE.

 

Note:

 

 the best way to keep current with Microchip systems is to register.

 

Highlights

 

The highlighted points in this chapter include:

• Keeping Current with Microchip Systems

• Systems Information and Upgrade Hot Line

• Connecting to Microchip BBS

• Using the Bulletin Board

• Special Interest Groups

• Files

• Mail

• Software Releases

• Alpha Release

• Intermediate Release

• Beta Release

• Production Release

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 136

 



 

 1995 Microchip Technology Inc.

 

Systems Information and Upgrade Hot Line

 

The Systems Information And Upgrade Line provides system users a 
listing of the latest versions of all of Microchip’s development systems 
software products. Plus, this line provides information on how customers 
can receive any currently available upgrade kits. The Hot Line Numbers 
are: 1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302 
for the rest of the world.

These phone numbers are also listed on the “Important Information” sheet 
that is shipped with all development systems. The hot line message is 
updated whenever a new software version is added to the Microchip BBS, or 
when a new upgrade kit becomes available.

 

Connecting to Microchip BBS

 

Connect worldwide to the Microchip BBS using the CompuServe

 



 

 
communications network. In most cases, a local call is your only expense. 
The Microchip BBS connection does not use CompuServe membership 
services, therefore, 

 

you do not need CompuServe membership to join 
Microchip’s BBS

 

.

There is 

 

no charge

 

 for connecting to the BBS, except for a toll charge to the 
CompuServe access number, where applicable. You do not need to be a 
CompuServe member to take advantage of this connection (you never 
actually log in to CompuServe).

The procedure to connect will vary slightly from country to country. Please 
check with your local CompuServe agent for details if you have a problem. 
CompuServe service allow multiple users at baud rates up to 14400 bps.

The following connect procedure applies in most locations.

1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the
normal CompuServe setting which is 7E1.

2. Dial your local CompuServe access number.

3. Depress 

 

<Enter

 

↵

 

>

 

 and a garbage string will appear because
CompuServe is expecting a 7E1 setting.

4. Type +, depress 

 

<Enter

 

↵

 

>

 

 and 

 

Host Name:

 

 will appear.

5. Type 

 

MCHIPBBS

 

, depress 

 

<Enter

 

↵

 

>

 

 and you will be connected to the
Microchip BBS.

6. In the United States, to find CompuServe’s phone number closest to
you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud
or (800) 331-7166 for 9600-14400 baud connection. After the system
responds with 

 

Host Name:

 

, type

 

NETWORK

 

, depress 

 

<Enter

 

↵

 

> 

 

and follow CompuServe’s directions.

For voice information (or calling from overseas), you may call (614) 457-1550 
for your local CompuServe number.



 



 

 1995 Microchip Technology Inc. DS30027I - page 137

 

Appendix C. Customer Support

Using the Bulletin Board

 

The bulletin board is a multifaceted tool. It can provide you with information on 
a number of different topics.

• Special Interest Groups

• Files

• Mail

• Bug Lists

 

Special Interest Groups

 

Special Interest Groups, or SIGs as they are commonly referred to, provide 
you with the opportunity to discuss issues and topics of interest with others 
that share your interest or questions. SIGs may provide you with information 
not available by any other method because of the broad background of the 
PIC16/17 user community.

There are SIGs for most Microchip systems, including:

These groups are monitored by the Microchip staff.

 

Files

 

Microchip regularly uses the Microchip BBS to distribute technical 
information, application notes, source code, errata sheets, bug reports, and 
interim patches for Microchip systems software products. Users can 
contribute files for distribution on the BBS. For each SIG, a moderator 
monitors, scans, and approves or disapproves files submitted to the SIG. No 
executable files are accepted from the user community in general to limit the 
spread of computer viruses.

• MPASM • MPSIM
• PICMASTER

 



 

• TRUE GAUGE

 



 

• PRO MATE •

 

fuzzy

 

TECH

 



 

-MP
• Utilities • ASSP
• Bugs



 

MPSIM USER’S GUIDE

 

DS30027I - page 138

 



 

 1995 Microchip Technology Inc.

 

Mail

 

The BBS can be used to distribute mail to other users of the service. This is 
one way to get answers to your questions and problems from the Microchip 
staff, as well as keeping in touch with fellow Microchip users worldwide.

Consider mailing the moderator of your SIG, or the SYSOP, if you have ideas 
or questions about Microchip products, or the operation of the BBS. 

 

Software Releases

 

Software products released by Microchip are referred to by version numbers. 
Version numbers use the form:

 

xx.yy.zz <status>

 

Where 

 

xx

 

 is the major release number, 

 

yy

 

 is the minor number, and 

 

ZZ

 

 is the 
intermediate number. The 

 

status

 

 field displays one of the following 
categories:

• Alpha

• Intermediate

• Beta

• Released

Production releases are numbered with major, and minor version numbers 
like:

 

3.04 Released

 

Alpha, Beta and Intermediate releases are numbered with the major, minor 
and intermediate numbers:

 

3.04.01 Alpha

 

Alpha Release

 

Alpha designated software is engineering software that has not been 
submitted to any quality assurance testing. In general, this grade of software 
is intended for software development team access only, but may be sent to 
selected individuals for conceptual evaluation. Once Alpha grade software 
has passed quality assurance testing, it may be upgraded to Beta or 
Intermediate status.

 

Note:

 

The SIGs provide you with the opportunity to discuss issues and 
exchange ideas. Technical support and urgent questions should 
be referred to your local distributor, sales representative or FAE. 
They are your first level of support.



 



 

 1995 Microchip Technology Inc. DS30027I - page 139

 

Appendix C. Customer Support

 

Intermediate Release

 

Intermediate released software represents changes to a released software 
system and is designated as such by adding an intermediate number to the 
version number. Intermediate changes are represented by:

• Bug Fixes

• Special Releases

• Feature Experiments

Intermediate released software does not represent our most tested and stable 
software. Typically, it will not have been subject to a thorough and rigorous 
test suite, unlike production released versions. Therefore, users should use 
these versions with care, and only in cases where the features provided by an 
intermediate release are required.

Intermediate releases are primarily available through the BBS.

 

Beta Release

 

Preproduction software is designated as Beta. Beta software is sent to 
Applications Engineers and Consultants, FAEs, and select customers. The 
Beta Test period is limited to a few weeks. Software that passes Beta testing 
without having significant flaws, will be production released. Flawed software 
will be evaluated, repaired, and updated with a new revision number for a 
subsequent Beta trial.

 

Production Release

 

Production released software is software shipped with tool products. Example 
products are PRO MATE, PICSTART

 



 

, and PICMASTER. The Major number 
is advanced when significant feature enhancements are made to the product. 
The minor version number is advanced for maintenance fixes and minor 
enhancements. Production released software represents Microchip’s most 
stable and thoroughly tested software.

There will always be a period of time when the Production Released software 
is not reflected by products being shipped until stocks are rotated. You should 
always check the BBS for the current production release.



 

MPSIM USER’S GUIDE

 

DS30027I - page 140

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 141

 

Appendix D.   Intel INTELLEC

 



 

 Hexadecimal Format

 

Figure D.1a    INHX8S and INHX8M File Formats

Figure D.1b    INHX8M File Formats

INHX8M                  INHX8S

 

START :(colon) START :(colon) START :(colon)

CHARACTER CHARACTER

WORD COUNT 2 Hex digits BYTE COUNT 2 Hex digits BYTE COUNT 2 Hex digits

ADDRESS 4 Hex digits ADDRESS 2 Hex digits ADDRESS 4 Hex digits

RECORD TYPE 2 Hex digits RECORD TYPE 2 Hex digits RECORD TYPE 2 Hex digits

HIGH BYTE 2 Hex digits LOW or HIGH 
BYTE

LOW BYTE 2 Hex digits

LOW BYTE 2 Hex digits CHECK SUM 2 Hex digits HIGH BYTE 1 Hex digits

CHECK SUM 2 Hex digits CHECK SUM 2 Hex digits

: 10 0000 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

: 10 0010 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

: 10 0020 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

: 10 0030 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

: 10 0040 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

IN
HX8M

Sta
rtC

ha
ra

cte
r

Byte
Cou

nt

Add
re

ss

Rec
or

dT
yp

e

Dat
aW

or
d

“ “ “ “ “ “ “ “ “ “ “ “ “ “
Che

ck
Sum

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 142

 



 

 1995 Microchip Technology Inc.

 

INHX8M

 

This format produces one 8-bit hexadecimal file with a low-byte/high-byte 
combination.  Since each address can only contain 8 bits in this format, all 
addresses are doubled.  File extensions for the object code are “.OBJ.”  This 
format is useful for transferring PIC16C5X series object code to third party 
EPROM programmers.

The difference between this format and Inhx16 is the word length and the 
high/low byte order.  Inhx8m has 8-bit words (two hexadecimal digits) with the 
low byte first, rather than 16-bit words (four hexadecimal digits) with the high 
byte first.

 

8-Bit Hex Format:

 

Each data record begins with a 9 character prefix and ends with a 2 character 
checksum.  Each record has the following format:

:BBAAAATTHHHH....HHHCC

where,

BB a two-digit hexadecimal byte count representing the number of 
data words that appear on the line.

AAAA a four-digit hexadecimal address representing the starting 
address for the data record.

TT a two-digit record type that will always be '00' except for the 
end-of-file record which is set to '01'.

HH a two-digit hexadecimal data word.

CC a two-digit hexadecimal checksum that’s the two's compliment 
of the sum of all preceding bytes in the record including the 
prefix.



 



 

 1995 Microchip Technology Inc. DS30027I - page 143

 

Appendix D. Intel INTELLEC‘ Hexadecimal Format

 

32-Bit Hex Format (.HEX)

 

The extended 32-bit address HEX format is similar to the Hex 8 format 
described above, except that the Intel extended linear address record is 
output also to establish the upper 16 bits of the data address. 

Each data record begins with a 9 character prefix and ends with a 2 character 
checksum.  Each record has the following format:

 

:BBAAAATTHHHH....HHHCC

 

where

 

BB

 

 - is a two digit hexadecimal byte count representing the number of data 
bytes that will appear on the line.

 

AAAA

 

 - is a four digit hexadecimal address representing the starting address 
of the data record.

 

TT

 

 - is a two digit record type record type:

00 - Data record 

01 - End of File record

02 - Segment address record

04 - Linear address record

 

HH

 

 - is a two digit hexadecimal data word.

 

CC

 

 - is a two digit hexadecimal checksum that is the two’s compliment of the 
sum of all preceding bytes in the record including the prefix.



 

MPSIM USER’S GUIDE

 

DS30027I - page 144

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 145

 

Appendix E.   PIC16C5X User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user’s guide to centralize PIC16C5X-specific simulator support.   

 

I/O Pins

 

The PIC16C5X family consists of the PIC16C54, PIC16C55, PIC16C56, 
PIC16C57, and PIC16C58A. When modifying pins either manually (with the 
SE command) or via the stimulus file, use the following pin names only. These 
are the only ones that MPSIM recognizes as valid I/O pins. Because the 
pinout is device-specific, some pins (for example RC0 on a PIC16C54) will 
not be available on all parts in this family.

•

 

MCLR

 

• T0CKI

• RA0-RA3

• RB0-RB7

• RC0-RC7

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM.  

A Power-On-Reset can be simulated by using the RS instruction.  All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the 

 

MCLR

 

 pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command.  

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time out forks in the user code.

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 146

 



 

 1995 Microchip Technology Inc.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register). 

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM.  The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16C5X, and additionally provides warning messages if an underflow or 
overflow condition occurs. When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW instruction is executed. If more than two 
values are pushed to the stack before it is popped, the value will be pushed to 
the stack, but a warning message will be issued, indicating a stack overflow 
condition. An error message will also be generated if the user attempts to pop 
an empty stack. Popping an empty stack will cause the last value popped to 
be put in the PC.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers. For example, the W register is not 
directly-addressable, but can be added to the viewscreen, by adding the 
special label “W” or “w” with the AD command, just as any register. The 
following is a complete list of “special” registers that can be added to the 
viewscreen and observed or modified. You can add them as you normally 
would any other register declared in your code, specifying any radix to view 
them.

• W (or w)

• TRISA

• TRISB

• TRISC

• OPT (the option register) 

It is important not to redefine these special labels. For example, do not define 
the label “W” to be equal to zero in your source code. This will cause the 
special label to be overridden, and “W” will now be the indirect-address 
register (INDF). 



 



 

 1995 Microchip Technology Inc. DS30027I - page 147

 

Appendix E. PIC16C5X User’s Guide Addendum

Peripherals

 

Peripherals Supported

 

Along with providing core support, the RTCC timer/counter module is fully 
supported. It is fully supported in internal and external clock modes. The 
prescaler is made readable and writable as ‘RTCCPRE’' symbol.

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated.  

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefore, there are several events that can not 
be accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0 prescaler is capable of accepting clock pulse inputs smaller 
than Tcy, but this can not be simulated.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.



 

MPSIM USER’S GUIDE

 

DS30027I - page 148

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 149

 

Appendix F.   PIC16C64 User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user’s guide to centralize PIC16C64-specific simulator support.   

 

I/O Pins

 

The PIC16C64 is a 40-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name).  When 
modifying pins either manually (e.g. with the SE command) or via the stimulus 
file,  use the following pin names only.  These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

• RD0-RD7

• RE0-RE2

 

Interrupts

 

MPSIM version 4.5 or greater supports all interrupts on the PIC16C64:

• Timer0 overflow

• Timer1 overflow

• Timer2 

• CCP1

• SSP (in SPI mode ONLY)

• Change on Port RB <7..4>

• External interrupt from RB0/INT pin

• Parallel Slave Port

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 150

 



 

 1995 Microchip Technology Inc.

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM.  

A Power-On-Reset can be simulated by using the RS instruction.  All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command.  

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register).  Another 
example of a wake-up-from-sleep condition, would be Timer1 wake-up from 
sleep.  In this case, when the processor is asleep, Timer1 would continue to 
increment until it overflows, and if the interrupt is enabled, will wake the 
processor on overflow and branch to the interrupt vector.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM.  The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW, RETURN, or RETFIE instruction is 
executed.  If more than eight values are pushed to the stack before it is 
popped, the value will be pushed to the stack, but a warning message will be 
issued, indicating a stack overflow condition.  An error message will also be 



 



 

 1995 Microchip Technology Inc. DS30027I - page 151

 

Appendix F. PIC16C64 User’s Guide Addendum

 

generated if the user attempts to pop an empty stack.  Popping an empty 
stack will cause the stack pointer to point to the top of a full stack, and will not 
generate an error message if another pop is initiated.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.  Prescalers and postscalers cannot 
be declared in your code as “registers”, so there are special labels that can be 
added to the view screen.  You can add them as you normally would any other 
register declared in your code,  specifying any radix to view them.

The following are special items that can be added to the view screen when 
the PIC16C64 has been selected:

• T0PRE - Prescaler for timer0

• T1PRE - Prescaler for timer1

• T2PRE - Prescaler for timer2

• T2POS - Postscaler for timer2

• CCP1PRE - Prescaler for CCP1

• SPIPRE - Prescaler for SPI

• SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C64 is 
the target processor, and that they cannot be manually modified.

 

Peripherals

 

Peripherals Supported

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer0

• Timer1

• Timer2

• CCP1

• Parallel Slave Port

• SSP (in SPI Mode only)

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.



 

MPSIM USER’S GUIDE

 

DS30027I - page 152

 



 

 1995 Microchip Technology Inc.

 

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefore, there are several events that can not 
be accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0, Timer1, and Timer2 prescalers are capable of accepting clock 
pulse inputs smaller than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1 Tcy is not supported.

• 8-bit compare will not be supported since the output resolution is limited 
to T cycles

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported

• The oscillator on RC0/RC1 pins is not supported.  The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Clock input must 
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to 
stimulus file requirements.  The prescaler for Timer0 is made accessible as 
T0PRE. It can be watched and modified.

 

TIMER1

 

Timer1 in its various modes is supported by MPSIM, except when running in 
counter mode by an external crystal.  The interrupt it can be generated on 
overflow and wake-up from sleep through interrupt are both supported by 
MPSIM.  The prescaler for Timer1 is viewable and modifiable as T1PRE. The 
external oscillator on RC0/RC1 is not  simulated. The user can simply use a 
clock input (see CK command).

 

TIMER2 

 

Timer2 and the interrupt that can be generated on overflow are fully supported 
by MPSIM, and both the prescaler and postscaler for Timer2 are viewable and 
modifiable (T2PRE and T2POS). 



 



 

 1995 Microchip Technology Inc. DS30027I - page 153

 

Appendix F. PIC16C64 User’s Guide Addendum

 

CCP1

 

CAPTURE

 

MPSIM fully supports capture and the interrupt generated.  The prescaler for 
the CCP module is viewable and modifiable (CCP1PRE).

 

COMPARE 

 

Compare mode, its interrupt, and the special event trigger (resetting Timer1 
by CCP1) are supported in this version of MPSIM.

 

PWM

 

PWM output (resolution greater than 1Tcy only) are supported in this version 
of MPSIM.

 

SSP

 

The Synchronous Serial Port is supported in SPI mode only.  The shift register 
(SSPSR) can be added to the viewscreen, observed and modified.  MPSIM 
currently does not support the I2C

 



 

 mode.



 

MPSIM USER’S GUIDE

 

DS30027I - page 154

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 155

 

Appendix G.   PIC16C65 User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user’s guide to centralize PIC16C65-specific simulator support.   

 

I/O Pins

 

The PIC16C65 is a 40-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name).  When 
modifying pins either manually (e.g. with the SE command) or via the stimulus 
file,  use the following pin names only.  These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

• RD0-RD7

• RE0-RE7 

 

Interrupts

 

MPSIM version 4.5 or greater supports all interrupts on the PIC16C65:

• Timer0 overflow

• Timer1 overflow

• Timer2 

• CCP1

• CCP2

• SSP (in SPI mode ONLY)

• Change on Port RB <7:4>

• External interrupt from RB0/INT pin

• USART 

• Parallel Slave Port

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 156

 



 

 1995 Microchip Technology Inc.

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM.  

A Power-On-Reset can be simulated by using the RS instruction.  All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command.  

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register).  Another 
example of a wake-up-from-sleep condition, would be Timer1 wake-up from 
sleep.  In this case, when the processor is asleep, Timer1 would continue to 
increment until it overflows, and if the interrupt is enabled, will wake the 
processor on overflow and branch to the interrupt vector.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM.  The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW, RETURN, or RETFIE instruction is 
executed.  If more than eight values are pushed to the stack before it is 
popped, the value will be pushed to the stack, but a warning message will be 
issued, indicating a stack overflow condition.  An error message will also be 



 



 

 1995 Microchip Technology Inc. DS30027I - page 157

 

Appendix G. PIC16C65 User’s Guide Addendum

 

generated if the user attempts to pop an empty stack.  Popping an empty 
stack will cause the stack pointer to point to the top of a full stack, and will not 
generate an error message if another pop is initiated.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.    Prescalers and postscalers 
cannot be declared in your code as “registers”, so there are special labels that 
can be added to the view screen.  You can add them as you normally would 
any other register declared in your code,  specifying any radix to view them.

The following are special items that can be added to the view screen when 
the PIC16C65 has been selected:

• T0PRE - Prescaler for timer0

• T1PRE - Prescaler for timer1

• T2PRE - Prescaler for timer2

• T2POS - Postscaler for timer2

• CCP1PRE - Prescaler for CCP1

• CCP2PRE - Prescaler for CCP2

• SPIPRE - Prescaler for SPI

• SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C65 is 
the target processor, and that they cannot be manually modified.

 

Peripherals

 

Peripherals Supported

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer0

• Timer1

• Timer2

• CCP1

• CCP2

• Parallel Slave Port

• SSP (in SPI Mode only)

• USART (limited)



 

MPSIM USER’S GUIDE

 

DS30027I - page 158

 



 

 1995 Microchip Technology Inc.

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefore, there are several events that can not 
be accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0, Timer1, and Timer2 prescalers are capable of accepting clock 
pulse inputs smaller than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1 Tcy is not supported.

• 8-bit compare will not be supported since the output resolution is limited 
to T cycles

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported

• The oscillator on RC0/RC1 pins is not supported.  The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Clock input must 
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to 
stimulus file requirements.  The prescaler for Timer0 is made accessible as 
T0PRE. It can be watched and modified.

 

TIMER1

 

Timer1 in its various modes is supported by MPSIM, except when running in 
counter mode by an external crystal.  The interrupt it can be generated on 
overflow and wake-up from sleep through interrupt are both supported by 
MPSIM.  The prescaler for Timer1 is viewable and modifiable as T1PRE. The 
external oscillator on RC0/RC1 is not  simulated. The user can simply use a 
clock input (see CK command).



 



 

 1995 Microchip Technology Inc. DS30027I - page 159

 

Appendix G. PIC16C65 User’s Guide Addendum

 

TIMER2 

 

Timer2 and the interrupt that can be generated on overflow are fully supported 
by MPSIM, and both the prescaler and postscaler for Timer2 are viewable and 
modifiable (T2PRE and T2POS). 

 

CCP1 and CCP2

 

CAPTURE

 

MPSIM fully supports capture and the interrupt generated.  The prescaler for 
the CCP module is viewable and modifiable (CCP1PRE).

 

COMPARE 

 

Compare mode, its interrupt, and the special event trigger (resetting Timer1 
with CCP1) are supported in this version of MPSIM.

 

PWM

 

PWM output (resolution greater than 1Tcy only) are supported in this version 
of MPSIM.

 

SSP

 

The Synchronous Serial Port is supported in SPI mode only.  The shift register 
(SSPSR) can be added to the viewscreen, observed and modified.  MPSIM 
currently does not support the I

 

2

 

C mode.

 

USART

 

Timing and interrupt generation is supported. Baud rate generator is 
supported. Reading and writing of the registers are supported but actual 
receive or transmit operation is not simulated. 



 

MPSIM USER’S GUIDE

 

DS30027I - page 160

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 161

 

Appendix H.   PIC16C71 User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user’s guide to centralize PIC16C71-specific simulator support.   

 

I/O Pins

 

The PIC16C71 is an 18-pin device, with some of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name).  When 
modifying pins either manually (e.g. with the SE command) or via the stimulus 
file,  use the following pin names only.  These are the only ones that MPSIM 
recognizes as valid I/O pins:

 

• MCLR

 

• RA0-RA4

• RB0-RB7

Additionally, RTCC is also recognized as Timer0 (previously RTCC) input, i.e. 
same as RA4.

 

Interrupts

 

MPSIM supports all interrupts on the PIC16C71:

• Timer0 overflow

• Change on Port RB <7..4>

• External interrupt from RB0/INT pin

• A/D interrupt complete

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 162

 



 

 1995 Microchip Technology Inc.

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM.  

A Power-On-Reset can be simulated by using the RS instruction.  All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command.  

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register).  Another 
example of a wake-up-from-sleep condition, would be wake-up due to RB0/
INT external interrupt. 

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM.  The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW, RETURN, or RETFIE instruction is 
executed.  If more than eight values are pushed to the stack before it is 
popped, the value will be pushed to the stack, but a warning message will be 
issued, indicating a stack overflow condition.  An error message will also be 
generated if the user attempts to pop an empty stack.  Popping an empty 
stack will cause the stack pointer to point to the top of a full stack, and will not 
generate an error message if another pop is initiated.



 



 

 1995 Microchip Technology Inc. DS30027I - page 163

 

Appendix H. PIC16C71 User’s Guide Addendum

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.    Prescalers and postscalers 
cannot be declared in your code as “registers”, so there are special labels that 
can be added to the view screen.  You can add them as you normally would 
any other register declared in your code,  specifying any radix to view them.

The following are special items that can be added to the view screen when 
the PIC16C71 has been selected:

• T0PRE - Prescaler for timer0

Please remember that these labels are only available when the PIC16C71 is 
the target processor, and that they cannot be manually modified.

 

Peripherals

 

Peripherals Supported

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer0

• A/D module (limited)

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefore, there are several events that can not 
be accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0 prescaler is capable of accepting clock pulse inputs smaller 
than Tcy, but this can not be simulated.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.



 

MPSIM USER’S GUIDE

 

DS30027I - page 164

 



 

 1995 Microchip Technology Inc.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Clock input must 
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to 
stimulus file requirements.  The prescaler for Timer0 is made accessible as 
T0PRE. It can be watched and modified.

 

A/D Converter

 

All the registers, timing function and interrupt generation are implemented. 
The simulator, however, does not load any meaningful value into A/D result 
register (ADRES) at the end of a conversion. Use the FI command to load the 
ADRES register from a file for simulation purposes.



 



 

 1995 Microchip Technology Inc. DS30027I - page 165

 

Appendix I.   PIC16C73 User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user’s guide to centralize PIC16C73-specific simulator support.   

 

I/O Pins

 

The PIC16C73 is a 28-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name).  When 
modifying pins either manually (e.g. with the SE command) or via the stimulus 
file,  use the following pin names only.  These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

 

Interrupts

 

MPSIM version 4.5 or greater supports all interrupts on the PIC16C73:

• Timer0 overflow

• Timer1 overflow

• Timer2 

• CCP1

• CCP2

• SSP (in SPI mode ONLY)

• Change on Port RB <7..4>

• External interrupt from RB0/INT pin

• A/D interrupt complete

• USART 

 

MPSIM USER’S GUIDE

 

Note:

 

Appendix O has been intentionally skipped in the numbering process.

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 166

 



 

 1995 Microchip Technology Inc.

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM.  

A Power-On-Reset can be simulated by using the RS instruction.  All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command.  

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register).  Another 
example of a wake-up-from-sleep condition, would be Timer1 wake-up from 
sleep.  In this case, when the processor is asleep, Timer1 would continue to 
increment until it overflows, and if the interrupt is enabled, will wake the 
processor on overflow and branch to the interrupt vector.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM.  The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW, RETURN, or RETFIE instruction is 
executed.  If more than eight values are pushed to the stack before it is 
popped, the value will be pushed to the stack, but a warning message will be 
issued, indicating a stack overflow condition.  An error message will also be 



 



 

 1995 Microchip Technology Inc. DS30027I - page 167

 

Appendix I. PIC16C73 User’s Guide Addendum

 

generated if the user attempts to pop an empty stack.  Popping an empty 
stack will cause the stack pointer to point to the top of a full stack, and will not 
generate an error message if another pop is initiated.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.    Prescalers and postscalers 
cannot be declared in your code as “registers”, so there are special labels that 
can be added to the view screen.  You can add them as you normally would 
any other register declared in your code,  specifying any radix to view them.

The following are special items that can be added to the view screen when the 
PIC16C73 has been selected:

• T0PRE - Prescaler for timer0

• T1PRE - Prescaler for timer1

• T2PRE - Prescaler for timer2

• T2POS - Postscaler for timer2

• CCP1PRE - Prescaler for CCP1

• CCP2PRE - Prescaler for CCP2

• SPIPRE - Prescaler for SPI

• SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C73 is 
the target processor, and that they cannot be manually modified.

 

Peripherals

 

Peripherals Supported

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer0

• Timer1

• Timer2

• CCP1

• CCP2

• SSP (in SPI Mode only)

• A/D module (limited)

• USART (limited)



 

MPSIM USER’S GUIDE

 

DS30027I - page 168

 



 

 1995 Microchip Technology Inc.

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefore, there are several events that can not 
be accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0, Timer1, and Timer2 prescalers are capable of accepting clock 
pulse inputs smaller than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1 Tcy is not supported.

• 8-bit compare will not be supported since the output resolution is limited 
to T cycles

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported

• The oscillator on RC0/RC1 pins is not supported.  The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Clock input must 
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to 
stimulus file requirements.  The prescaler for Timer0 is made accessible as 
T0PRE. It can be watched and modified.

 

TIMER1

 

Timer1 in its various modes is supported by MPSIM, except when running in 
counter mode by an external crystal.  The interrupt it can be generated on 
overflow and wake-up from sleep through interrupt are both supported by 
MPSIM.  The prescaler for Timer1 is viewable and modifiable as T1PRE. The 
external oscillator on RC0/RC1 is not  simulated. The user can simply use a 
clock input (see CK command).



 



 

 1995 Microchip Technology Inc. DS30027I - page 169

 

Appendix I. PIC16C73 User’s Guide Addendum

 

TIMER2 

 

Timer2 and the interrupt that can be generated on overflow are fully 
supported by MPSIM, and both the prescaler and postscaler for Timer2 are 
viewable and modifiable (T2PRE and T2POS). 

 

CCP1 and CCP2

 

CAPTURE

 

MPSIM fully supports capture and the interrupt generated.  The prescaler for 
the CCP module is viewable and modifiable (CCP1PRE).

 

COMPARE 

 

Compare mode, its interrupt, and the special event trigger (resetting Timer1 if 
CCP1 and starting A/D Conversion if CCP2) are supported in this version of 
MPSIM.

 

PWM

 

PWM output (resolution greater than 1Tcy only) are supported in this version 
of MPSIM.

 

SSP

 

The Synchronous Serial Port is supported in SPI mode only.  The shift register 
(SSPSR) can be added to the viewscreen, observed and modified.  MPSIM 
currently does not support the I

 

2

 

C mode.

 

USART

 

Timing and interrupt generation is supported. Baud rate generator is 
supported. Reading and writing of the registers are supported but actual 
receive or transmit operation is not simulated. 

 

A/D Converter

 

All the registers, timing function and interrupt generation are implemented. 
The simulator, however, does not load any meaningful value into A/D result 
register (ADRES) at the end of a conversion. Use the FI command to load the 
ADRES register from a file for simulation purposes.



 

MPSIM USER’S GUIDE

 

DS30027I - page 170

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 171

 

Appendix J.   PIC16C74 User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user’s guide to centralize PIC16C74-specific simulator support.   

 

I/O Pins

 

The PIC16C74 is a 40-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name).  When 
modifying pins either manually (e.g. with the SE command) or via the stimulus 
file,  use the following pin names only.  These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

• RD0-RD7

• RE0-RE2

 

Interrupts

 

MPSIM supports all interrupts on the PIC16C74:

• Timer0 overflow

• Timer1 overflow

• Timer2 

• CCP1

• CCP2

• SSP (in SPI mode ONLY)

• Change on Port RB <7..4>

• External interrupt from RB0/INT pin

• A/D interrupt complete

• USART 

• Parallel Slave Port

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 172

 



 

 1995 Microchip Technology Inc.

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM.  

A Power-On-Reset can be simulated by using the RS instruction.  All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command.  

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register).  Another 
example of a wake-up-from-sleep condition, would be Timer1 wake-up from 
sleep.  In this case, when the processor is asleep, Timer1 would continue to 
increment until it overflows, and if the interrupt is enabled, will wake the 
processor on overflow and branch to the interrupt vector.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM.  The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW, RETURN, or RETFIE instruction is 
executed.  If more than eight values are pushed to the stack before it is 
popped, the value will be pushed to the stack, but a warning message will be 
issued, indicating a stack overflow condition.  An error message will also be 



 



 

 1995 Microchip Technology Inc. DS30027I - page 173

 

Appendix J. PIC16C74 User’s Guide Addendum

 

generated if the user attempts to pop an empty stack.  Popping an empty 
stack will cause the stack pointer to point to the top of a full stack, and will not 
generate an error message if another pop is initiated.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.  Prescalers and postscalers cannot 
be declared in your code as “registers”, so there are special labels that can be 
added to the view screen.  You can add them as you normally would any other 
register declared in your code,  specifying any radix to view them.

The following are special items that can be added to the view screen when 
the PIC16C74 has been selected:

• T0PRE - Prescaler for timer0

• T1PRE - Prescaler for timer1

• T2PRE - Prescaler for timer2

• T2POS - Postscaler for timer2

• CCP1PRE - Prescaler for CCP1

• CCP2PRE - Prescaler for CCP2

• SPIPRE - Prescaler for SPI

• SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C74 is 
the target processor, and that they cannot be manually modified.

 

Peripherals

 

Peripherals Supported

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer0

• Timer1

• Timer2

• CCP1

• CCP2

• Parallel Slave Port

• SSP (in SPI Mode only)

• A/D module (limited)

• USART (limited)



 

MPSIM USER’S GUIDE

 

DS30027I - page 174

 



 

 1995 Microchip Technology Inc.

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefore, there are several events that can not 
be accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0, Timer1, and Timer2 prescalers are capable of accepting clock 
pulse inputs smaller than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1 Tcy is not supported.

• 8-bit compare will not be supported since the output resolution is limited 
to T cycles

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported

• The oscillator on RC0/RC1 pins is not supported.  The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Clock input must 
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to 
stimulus file requirements.  The prescaler for Timer0 is made accessible as 
T0PRE. It can be watched and modified.

 

TIMER1

 

Timer1 in its various modes is supported by MPSIM, except when running in 
counter mode by an external crystal.  The interrupt it can be generated on 
overflow and wake-up from sleep through interrupt are both supported by 
MPSIM.  The prescaler for Timer1 is viewable and modifiable as T1PRE. The 
external oscillator on RC0/RC1 is not  simulated. The user can simply use a 
clock input (see CK command).



 



 

 1995 Microchip Technology Inc. DS30027I - page 175

 

Appendix J. PIC16C74 User’s Guide Addendum

 

TIMER2 

 

Timer2 and the interrupt that can be generated on overflow are fully supported 
by MPSIM, and both the prescaler and postscaler for Timer2 are viewable and 
modifiable (T2PRE and T2POS). 

 

CCP1 and CCP2

 

CAPTURE

 

MPSIM fully supports capture and the interrupt generated.  The prescaler for 
the CCP module is viewable and modifiable (CCP1PRE).

 

COMPARE 

 

Compare mode, its interrupt, and the special event trigger (resetting Timer1 if 
CCP1 and starting A/D Conversion if CCP2) are supported in this version of 
MPSIM.

 

PWM

 

PWM output (resolution greater than 1Tcy only) are supported in this version 
of MPSIM.

 

SSP

 

The Synchronous Serial Port is supported in SPI mode only.  The shift register 
(SSPSR) can be added to the viewscreen, observed and modified.  MPSIM 
currently does not support the I

 

2

 

C mode.

 

USART

 

Timing and interrupt generation is supported. Baud rate generator is 
supported. Reading and writing of the registers are supported but actual 
receive or transmit operation is not simulated. 

 

A/D Converter

 

All the registers, timing function and interrupt generation are implemented. 
The simulator, however, does not load any meaningful value into A/D result 
register (ADRES) at the end of a conversion. Use the FI command to load the 
ADRES register from a file for simulation purposes.



 

MPSIM USER’S GUIDE

 

DS30027I - page 176

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 177

 

Appendix K.   PIC16C84 User’s Guide Addendum

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers. This section has been added as an addendum to the MPSIM 
user’s guide to centralize PIC16C74-specific simulator support.   

 

I/O Pins

 

The PIC16C84 is an 18-pin device, with some of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name). When 
modifying pins either manually (e.g. with the SE command) or via the stimulus 
file, use the following pin names only. These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA4

• RB0-RB7

 

Interrupts

 

MPSIM supports all interrupts on the PIC16C71:

• Timer0 overflow

• Change on Port RB <7:4>

• External interrupt from RB0/INT pin

• EEPROM write complete

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM. 

A Power-On-Reset can be simulated by using the RS instruction. All special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file or 
by using the SE command or by using DK command. 

A WDT time-out reset is simulated when WDT is enabled (see DW command) 
and proper prescaler is set (by initializing OPTION register appropriately) and 
WDT actually overflows. WDT time-out period (with prescale = 1) is 
approximated at 18 ms (to closest instruction cycle multiple). 

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 178

 



 

 1995 Microchip Technology Inc.

 

The Time-out (TO) and Power-down (PD) bits in the Status register reflect 
appropriate reset condition. This feature is useful for simulating various 
power-up and time out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction, and will appear “asleep” until a 
wake-up from sleep condition occurs. For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending upon the prescaler setting in the OPTION register). Another 
example of a wake-up-from-sleep condition, would be due to RB0/INT 
interrupt wake-up. 

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator. Because it is 
fuse-selectable on the device, it must be enabled by a separate command 
(see the DW command) in MPSIM. The period of the WDT is determined by 
the prescaler settings in the OPTION register. The basic period (with 
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC16CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs. When a CALL instruction is encountered, or when 
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and 
the stack is popped when a RETLW, RETURN, or RETFIE instruction is 
executed. If more than eight values are pushed to the stack before it is 
popped, the value will be pushed to the stack, but a warning message will be 
issued, indicating a stack overflow condition. An error message will also be 
generated if the user attempts to pop an empty stack. Popping an empty stack 
will cause the stack pointer to point to the top of a full stack, and will not 
generate an error message if another pop is initiated.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.    Prescalers and postscalers 
cannot be declared in your code as “registers”, so there are special labels that 
can be added to the view screen. You can add them as you normally would 
any other register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when 
the PIC16C84 has been selected:

• T0PRE - Prescaler for timer0

Please remember that these labels are only available when the PIC16C84 is 
the target processor, and that they cannot be manually modified.



 



 

 1995 Microchip Technology Inc. DS30027I - page 179

 

Appendix K. PIC16C84 User’s Guide Addendum

Peripherals

 

Peripherals Supported

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer0

• EEPROM data memory

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all 
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc 
(where Tosc is input clock). Therefore, there are several events that can not be 
accurately simulated in MPSIM. These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0 prescaler is capable of accepting clock pulse inputs smaller 
than Tcy, but this can not be simulated.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock. Clock input must 
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to 
stimulus file requirements. The prescaler for Timer0 is made accessible as 
T0PRE. It can be watched and modified.

 

EEPROM Data Memory 

 

The EEPROM data memory is fully simulated. The registers and the read/
write cycles are fully implemented. The write cycle time is approximated to 10 
ms (to nearest instruction cycle multiple).

Please note that whereas the write to EEPROM is supported, the simulator 
does not check for “the valid instruction sequence”. The simulator does, 
however, simulate functions of WRERR and WREN control bits in the 
EECON1 register.



 

MPSIM USER’S GUIDE

 

DS30027I - page 180

 



 

 1995 Microchip Technology Inc.



 



 

 1995 Microchip Technology Inc. DS30027I - page 181

 

Appendix L.   PIC17C42 Support

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user's guide to centralize PIC17C42-specific simulator support.   

 

I/O Pins

 

The PIC17C42 is a 40-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name). When 
modifying pins either manually (with the SE command) or via the stimulus file, 
use the following pin names only. These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

• RD0-RD7

• RE0-RE2

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 182

 



 

 1995 Microchip Technology Inc.

 

Special Function Registers

 

Many special-function registers in the PIC17CXX family (specifically the 
“peripheral registers”) are located in register banks other than bank zero. To 
access these registers in your program, you must first select the desired bank 
and then specify the address within that bank (0x10 - 0x17). Because of this, 
the “porta” register (address 0x10 in bank 0), for example, and the “ddrc” 
(address 0x10 in bank 1) registers would both be defined in your source code 
as addresses 0x10. 

In order to distinguish between labels that have the same address, MPSIM 
has pre-defined the following labels with file register addresses and has 
added them to its internal symbol table:

DDRC TMR1 PW1DCL

PORTC TMR2 PW2DCL

DDRD TMR3L PW1DCH

PORTD TMR3H PW2DCH

DDRE PR1 CA2L

PORTE PR2 CA2H

PIR PR3L TCON1

PIE PR3H TCON2

If you want to view the contents of any of these registers during your 
simulation session, you can add them to the viewscreen by using the “AD” 
command. 



 



 

 1995 Microchip Technology Inc. DS30027I - page 183

 

Appendix L. PIC17C42 Support

Interrupts

 

MPSIM Version 5.0 or greater supports all interrupts on the PIC17C42:

• External interrupt on INT pin

• TMR0 overflow interrupt

• External interrupt on RA0 pin

• Port B input change interrupt

• Timer/Counter1 interrupt

• Timer/Counter2 interrupt

• Timer/Counter3 interrupt

• Capture1 interrupt

• Capture2 Interrupt

• Serial port transmit interrupt*

• Serial port receive interrupt*

*Serial port timing only

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM

A Power-On-Reset can be simulated by using the RS instruction.  all special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file, by 
using the SE command, or by using the DK command.

A WDT time-out reset is simulated when the WDT is enabled (see DW 
command) and the proper prescaler is set (see the FW command) and the 
WDT actually overflows.  WDT time-out period is approximated at 12 ms (to 
closest instruction cycle multiple) but can be changed by using the WP 
command.

The Time out (TO) and Power-Down (PD) bits in the ALUSTA register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time-out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending on the fuse setting by the FW command).  Another example of a 
wake-up-from-sleep condition, would be an input change on PORTB.  If the 



 

MPSIM USER’S GUIDE

 

DS30027I - page 184

 



 

 1995 Microchip Technology Inc.

 

interrupt is enabled and the GLINTD bit is set, the processor will wake-up and 
will resume executing from the instruction following the SLEEP command.   If 
the GLINTD = 0, the normal interrupt response will take place.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable and fuse-configurable on the device, it must be enabled and 
configured by separate commands (see the DW  and the FW commands) in 
MPSIM.  The basic period of the WDT (with prescaler = 1) is approximated at 
12ms (to closest instruction cycle multiple) but can also be changed via the 
WP command.

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC17CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL or LCALL instruction is encountered 
or when an interrupt has occurred, the value of the PC+ 1 is pushed to the 
stack. The stack is popped when a RETLW, RETURN, or RETFIE instruction 
is executed.  If more than sixteen values are pushed to the stack before it is 
popped, the value will be pushed to the stack, a warning message will be 
issued indicating a stack overflow condition, and the STAKAVL bit will be 
cleared until a reset condition occurs  

 

Instruction Set

 

The entire PIC17CXX instruction set is supported, including pre-increment 
and post-increment of indirect-address registers (according to their 
configuration). The TABLRD and TABLWT instructions are also fully 
supported, including long writes for the TABLWT instruction.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.  Prescalers cannot be declared in 
user code as “registers”, so there ar special labels that can be added to the 
view screen.  You can add them as you normally would any other register 
declared in your code, specifying any radix to view them.

The following special items can be added to the view screen when the 
PIC17C42 has been selected:

 

T0PRE (Prescaler for Timer 0)

WDTPRE (Prescaler for WDT)



 



 

 1995 Microchip Technology Inc. DS30027I - page 185

 

Appendix L. PIC17C42 Support

Peripherals

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer 0 in both internal and external clock modes

• Timer1 and Timer2 (and their respective period registers)

• Timer3

• Two Capture Modules

• Two PWM Modules

• USART (limited)

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated an all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefor, there are several events that can not be 
accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0 prescaler is capable of accepting clock pulse inputs smaller 
than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1Tcy is not supported

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Delay from 
external clock edge to timer increment has also been simulated, as well as 
the interrupt latency period.  Clock input must have a minimum high time of 
1Tcy and a minimum low time of 1Tcy due to the stimulus file requirements.  
The prescaler for Timer0 is made accessible as T0PRE.  It can be watched 
and modified.



 

MPSIM USER’S GUIDE

 

DS30027I - page 186

 



 

 1995 Microchip Technology Inc.

 

TIMER1 and TIMER2

 

Timer1 and Timer2 in its various modes is fully supported by MPSIM.  Delays 
from clock edge to increment (when configured to increment from rising or 
falling edge of external clock) is simulated as well as the interrupt latency 
periods. Clock input must have a minimum high time of 1Tcy and a minimum 
low time of 1Tcy due to the stimulus file requirements.

 

TIMER3 and Capture

 

MPSIM fully supports Timer3 and the Capture module in all of its modes.  
Delays from clock edge to increment (when configured in external mode), 
delay for capture and interrupt latency periods are fully supported. Clock input 
must have a minimum high time of 1Tcy and a minimum low time of 1Tcy due 
to the stimulus file requirements.

 

PWM

 

Both PWM outputs are supported (resolution greater than 1Tcy only) are 
supported in this version of MPSIM.

 

USART

 

Timing and interrupt generation is supported.  Baud rate generator is 
supported.  Reading and writing of the registers are supported but actual 
receive or transmit operation is not simulated.

 

Memory Modes

 

The following memory modes are supported by MPSIM:

• Microcontroller Mode

• Extended Microcontroller Mode

• Microprocessor Mode

The default is Microcontroller mode, which has 2K of program-memory 
on-chip. If you would like to use any of the other modes, you must use the 
FW command (since this option is fuse-selectable on-chip). 



 



 

 1995 Microchip Technology Inc. DS30027I - page 187

 

Appendix M.   PIC17C43 Support

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user's guide to centralize PIC17C43-specific simulator support.   

 

 I/O Pins

 

The PIC17C43 is a 40-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name). When 
modifying pins either manually (with the SE command) or via the stimulus file, 
use the following pin names only. These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

• RD0-RD7

• RE0-RE2

 

Special Function Registers

 

Many special-function registers in the 17CXX family (specifically the 
“peripheral registers”) are located in register banks other than bank zero.  To 
access these registers in your program, you must first select the desired bank 
and then specify the address within that bank (0x10 - 0x17).  Because of this, 
the “porta” register (address 0x10 in bank 0), for example, and the “ddrc” 
(address 0x10 in bank 1) registers would both be defined in your source code 
as addresses 0x10.  

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 188

 



 

 1995 Microchip Technology Inc.

 

In order to distinguish between labels that have the same address, MPSIM 
has pre-defined the following labels with file register addresses and has 
added them to its internal symbol table:

DDRC TMR1 PW1DCL

PORTC TMR2 PW2DCL

DDRD TMR3L PW1DCH

PORTD TMR3H PW2DCH

DDRE PR1 CA2L

PORTE PR2 CA2H

PIR PR3L TCON1

PIE PR3H TCON2

If you want to view the contents of any of these registers during your 
simulation session, you can add them to the viewscreen by using the “AD” 
command. 

 

Interrupts

 

MPSIM Version 5.0 or greater supports all interrupts on the PIC17C43:

• External interrupt on INT pin

• TMR0 overflow interrupt

• External interrupt on RA0 pin

• Port B input change interrupt

• Timer/Counter1 interrupt

• Timer/Counter2 interrupt

• Timer/Counter3 interrupt

• Capture1 interrupt

• Capture2 Interrupt

• Serial port transmit interrupt*

• Serial port receive interrupt*

*Serial port timing only



 



 

 1995 Microchip Technology Inc. DS30027I - page 189

 

Appendix M. PIC17C43 Support

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM

A Power-On-Reset can be simulated by using the RS instruction.  all special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file, by 
using the SE command, or by using the DK command.

A WDT time-out reset is simulated when the WDT is enabled (see DW 
command) and the proper prescaler is set (see the FW command) and the 
WDT actually overflows.  WDT time-out period is approximated at 12 ms (to 
closest instruction cycle multiple) but can be changed by using the WP 
command.

The Time out (TO) and Power-Down (PD) bits in the ALUSTA register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time-out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction and will appear “asleep” until a 
wake-up from sleep condition occurs.  For example, if the Watchdog timer has 
been enabled, it will wake the processor up from sleep when it times out 
(depending on the fuse setting by the FW command).  Another example of a 
wake-up-from-sleep condition, would be an input change on PORT B.  If the 
interrupt is enabled and the GLINTD bit is set, the processor will wake-up and 
will resume executing from the instruction following the SLEEP command.   If 
the GLINTD = 0, the normal interrupt response will take place.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable and fuse-configurable on the device, it must be enabled and 
configured by separate commands (see the DW  and the FW commands) in 
MPSIM.  The basic period of the WDT (with prescaler = 1) is approximated at 
12ms (to closest instruction cycle multiple) but can also be changed via the 
WP command.

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC17CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL or LCALL instruction is encountered 
or when an interrupt has occurred, the value of the PC+ 1 is pushed to the 
stack. The stack is popped when a RETLW, RETURN, or RETFIE instruction 
is executed.  If more than sixteen values are pushed to the stack before it is 



 

MPSIM USER’S GUIDE

 

DS30027I - page 190

 



 

 1995 Microchip Technology Inc.

 

popped, the value will be pushed to the stack, a warning message will be 
issued indicating a stack overflow condition, and the STAKAVL bit will be 
cleared until a reset condition occurs  

 

Instruction Set

 

The entire PIC17CXX instruction set is supported, including pre-increment 
and post-increment of indirect-address registers (according to their 
configuration). The TABLRD and TABLWT instructions are also fully 
supported, including long writes for the TABLWT instruction. The hardware 
multiply instructions, MULLW and MULLWF are both fully supported as is the 
MOVLP instruction.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.  Prescalers cannot be declared in 
user code as “registers”, so there ar special labels that can be added to the 
view screen.  You can add them as you normally would any other register 
declared in your code, specifying any radix to view them.

The following special item can be added to the view screen when the 
PIC17C43 has been selected:

 

T0PRE (Prescaler for Timer 0)

WDTPRE (Prescaler for WDT) 

 

Peripherals

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer 0 in both internal and external clock modes

• Timer1 and Timer2 (and their respective period registers)

• Timer3

• Two Capture Modules

• Two PWM Modules

• USART (limited)



 



 

 1995 Microchip Technology Inc. DS30027I - page 191

 

Appendix M. PIC17C43 Support

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated an all 
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc 
(where Tosc is input clock). Therefore, there are several events that can not be 
accurately simulated in MPSIM. These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0 prescaler is capable of accepting clock pulse inputs smaller 
than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1Tcy is not supported

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Delay from 
external clock edge to timer increment has also been simulated, as well as 
the interrupt latency period.  Clock input must have a minimum high time of 
1Tcy and a minimum low time of 1Tcy due to the stimulus file requirements.  
The prescaler for Timer0 is made accessible as T0PRE.  It can be watched 
and modified.

 

TIMER1 and TIMER2

 

Timer1 and Timer2 in its various modes is fully supported by MPSIM.  Delays 
from clock edge to increment (when configured to increment from rising or 
falling edge of external clock) is simulated as well as the interrupt latency 
periods. Clock input must have a minimum high time of 1Tcy and a minimum 
low time of 1Tcy due to the stimulus file requirements.



 

MPSIM USER’S GUIDE

 

DS30027I - page 192

 



 

 1995 Microchip Technology Inc.

 

TIMER3 and Capture

 

MPSIM fully supports Timer3 and the Capture module in all of its modes.  
Delays from clock edge to increment (when configured in external mode), 
delay for capture and interrupt latency periods are fully supported. Clock input 
must have a minimum high time of 1Tcy and a minimum low time of 1Tcy due 
to the stimulus file requirements.

 

PWM

 

Both PWM outputs are supported (resolution greater than 1Tcy only) are 
supported in this version of MPSIM.

 

USART

 

Timing and interrupt generation is supported.  Baud rate generator is 
supported.  Reading and writing of the registers are supported but actual 
receive or transmit operation is not simulated.

 

Memory Modes

 

The following memory modes are supported by MPSIM:

• Microcontroller Mode

• Extended Microcontroller Mode

• Microprocessor Mode

The default is Microcontroller mode, which has 4K of program-memory 
on-chip. If you would like to use any of the other modes, you must use the 
FW command (since this option is fuse-selectable on-chip). 



 



 

 1995 Microchip Technology Inc. DS30027I - page 193

 

Appendix N.   PIC17C44 Support

 

Introduction

 

MPSIM provides support for more than one family of Microchip 
microcontrollers.  This section has been added as an addendum to the 
MPSIM user's guide to centralize PIC17C44-specific simulator support.   

 

I/O Pins

 

The PIC17C44 is a 40-pin device, with many of the I/O pins multiplexed with 
other peripherals (and therefore referred by more than one name). When 
modifying pins either manually (with the SE command) or via the stimulus file, 
use the following pin names only. These are the only ones that MPSIM 
recognizes as valid I/O pins:

• MCLR

• RA0-RA5

• RB0-RB7

• RC0-RC7

• RD0-RD7

• RE0-RE2

 

Special Function Registers

 

Many special-function registers in the PIC17CXX family (specifically the 
“peripheral registers”) are located in register banks other than bank zero. To 
access these registers in your program, you must first select the desired bank 
and then specify the address within that bank (0x10 - 0x17). Because of this, 
the “porta” register (address 0x10 in bank 0), for example, and the “ddrc” 
(address 0x10 in bank 1) registers would both be defined in your source code 
as addresses 0x10. 

In order to distinguish between labels that have the same address, MPSIM 
has pre-defined the following labels with file register addresses and has 
added them to its internal symbol table:

DDRC TMR1 PW1DCL
PORTC TMR2 PW2DCL
DDRD TMR3L PW1DCH
PORTD TMR3H PW2DCH
DDRE PR1 CA2L
PORTE PR2 CA2H
PIR PR3L TCON1
PIE PR3H TCON2

 

MPSIM USER’S GUIDE

 



 

MPSIM USER’S GUIDE

 

DS30027I - page 194

 



 

 1995 Microchip Technology Inc.

 

If you want to view the contents of any of these registers during your 
simulation session, you can add them to the viewscreen by using the “AD” 
command. 

 

Interrupts

 

MPSIM Version 5.0 or greater supports all interrupts on the PIC17C44:

• External interrupt on INT pin

• TMR0 overflow interrupt

• External interrupt on RT pin

• Port B input change interrupt

• Timer/Counter1 interrupt

• Timer/Counter2 interrupt

• Timer/Counter3 interrupt

• Capture1 interrupt

• Capture2 Interrupt

• Serial port transmit interrupt*

• Serial port receive interrupt*

*Serial port timing only

 

CPU Model

 

Reset Conditions

 

All reset conditions are supported by MPSIM

A Power-On-Reset can be simulated by using the RS instruction.  all special-
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be 
simulated by driving the MCLR pin low (and then high) via the stimulus file, by 
using the SE command, or by using the DK command.

A WDT time-out reset is simulated when the WDT is enabled (see DW 
command) and the proper prescaler is set (see the FW command) and the 
WDT actually overflows.  WDT time-out period is approximated at 12 ms (to 
closest instruction cycle multiple) but can be changed by using the WP 
command.

The Time out (TO) and Power-Down (PD) bits in the ALUSTA register reflect 
appropriate reset condition.  This feature is useful for simulating various 
power-up and time-out forks in the user code.

 

Sleep

 

MPSIM simulates the SLEEP instruction and will appear “asleep” until a wake-
up from sleep condition occurs.  For example, if the Watchdog timer has been 
enabled, it will wake the processor up from sleep when it times out 
(depending on the fuse setting by the FW command).  Another example of a 



 



 

 1995 Microchip Technology Inc. DS30027I - page 195

 

Appendix N. PIC17C44 Support

 

wake-up-from-sleep condition, would be an input change on PORT B.  If the 
interrupt is enabled and the GLINTD bit is set, the processor will wake-up and 
will resume executing from the instruction following the SLEEP command.   If 
the GLINTD = 0, the normal interrupt response will take place.

 

WDT

 

The Watchdog timer is fully simulated in the MPSIM simulator.  Because it is 
fuse-selectable and fuse-configurable on the device, it must be enabled and 
configured by separate commands (see the DW  and the FW commands) in 
MPSIM.  The basic period of the WDT (with prescaler = 1) is approximated at 
12ms (to closest instruction cycle multiple) but can also be changed via the 
WP command.

 

Stack

 

MPSIM presents an accurate simulation of the hardware stack on the 
PIC17CXX, and additionally provides warning messages if an underflow or 
overflow condition occurs.  When a CALL or LCALL instruction is encountered 
or when an interrupt has occurred, the value of the PC+ 1 is pushed to the 
stack. The stack is popped when a RETLW, RETURN, or RETFIE instruction 
is executed.  If more than sixteen values are pushed to the stack before it is 
popped, the value will be pushed to the stack, a warning message will be 
issued indicating a stack overflow condition, and the STAKAVL bit will be 
cleared until a reset condition occurs  

 

Instruction Set

 

The entire PIC17CXX instruction set is supported, including pre-increment 
and post-increment of indirect-address registers (according to their 
configuration). The TABLRD and TABLWT instructions are also fully 
supported, including long writes for the TABLWT instruction. The hardware 
multiply instructions, MULLW and MULLWF are both fully supported as is the 
MOVLP instruction.

 

Special Registers

 

To aid in debugging this device, certain items that are normally not observable 
have been declared as “special” registers.  Prescalers cannot be declared in 
user code as “registers”, so there ar special labels that can be added to the 
view screen.  You can add them as you normally would any other register 
declared in your code, specifying any radix to view them.

The following special item can be added to the view screen when the 
PIC17C44 has been selected:

 

T0PRE (Prescaler for Timer 0)

WDTPRE (Prescaler for WDT)



 

MPSIM USER’S GUIDE

 

DS30027I - page 196

 



 

 1995 Microchip Technology Inc.

 

Peripherals

 

Along with providing core support, the following peripheral modules (in 
addition to general-purpose I/O) are supported:

• Timer 0 in both internal and external clock modes

• Timer1 and Timer2 (and their respective period registers)

• Timer3

• Two Capture Modules

• Two PWM Modules

• USART (limited)

 

Tcycle Limitation

 

It is important to remember that because MPSIM executes on instruction 
cycle boundaries, resolutions below 1Tcy cannot be simulated.  Please see 
the following section for more details concerning the limitations of T-cycle 
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated an all 
response generated at instruction boundaries or Tcy.  One Tcy = 4 Tosc 
(where Tosc is input clock).  Therefor, there are several events that can not be 
accurately simulated in MPSIM.  These fall into two categories:

• Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• Timer0 prescaler is capable of accepting clock pulse inputs smaller 
than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be 
simulated.

• PWM output pulse resolution less than 1Tcy is not supported

• In unsynchronized counter mode, clock input smaller than Tcy is not 
supported.

In summary, the net result of instruction boundary simulation is that all events 
get synchronized at instruction boundary and events smaller than one 
instruction cycle get lost.

 

TIMER0

 

Timer0 (and the interrupt it can generate on overflow) is fully supported by 
MPSIM, and will increment by the internal or external clock.  Delay from 
external clock edge to timer increment has also been simulated, as well as the 
interrupt latency period.  Clock input must have a minimum high time of 1Tcy 
and a minimum low time of 1Tcy due to the stimulus file requirements.  The 
prescaler for Timer0 is made accessible as T0PRE.  It can be watched and 
modified.



 



 

 1995 Microchip Technology Inc. DS30027I - page 197

 

Appendix N. PIC17C44 Support

 

TIMER1 and TIMER2

 

Timer1 and Timer2 in its various modes is fully supported by MPSIM.  Delays 
from clock edge to increment (when configured to increment from rising or 
falling edge of external clock) is simulated as well as the interrupt latency 
periods. Clock input must have a minimum high time of 1Tcy and a minimum 
low time of 1Tcy due to the stimulus file requirements.

 

TIMER3 and Capture

 

MPSIM fully supports Timer3 and the Capture module in all of its modes.  
Delays from clock edge to increment (when configured in external mode), 
delay for capture and interrupt latency periods are fully supported. Clock input 
must have a minimum high time of 1Tcy and a minimum low time of 1Tcy due 
to the stimulus file requirements.

 

PWM

 

Both PWM outputs are supported (resolution greater than 1Tcy only) are 
supported in this version of MPSIM.

 

USART

 

Timing and interrupt generation is supported.  Baud rate generator is 
supported.  Reading and writing of the registers are supported but actual 
receive or transmit operation is not simulated.

 

Memory Modes

 

The following memory modes are supported by MPSIM:

• Microcontroller Mode

• Extended Microcontroller Mode

• Microprocessor Mode

The default is Microcontroller mode, which has 8K of program-memory on-
chip.  If you would like to use any of the other modes, you must use the FW 
command (since this option is fuse-selectable on chip).  



WORLDWIDE SALES & SERVICE

AMERICAS (continued)
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA  95131
Tel: 408 436-7950  Fax: 408 436-7955

ASIA/PACIFIC
Hong Kong
Microchip Technology
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200  Fax: 852 2 401 3431
Korea
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200  Fax: 82 2 558  5934
Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel:  65 334 8870  Fax: 65 334 8850
Taiwan
Microchip Technology 
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175  Fax: 886 2 545 0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259
France
Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20  Fax: 33 1 69 30 90 79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0   Fax: 49 89 627 144 44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041 
Agrate Brianza (MI) Italy 
Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166  Fax: 81 45 471 6122

9/22/95

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ  85224-6199
Tel: 602 786-7200  Fax: 602 786-7277
Technical Support:  602 786-7627
Web: http://www.mchip.com/microhip
Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA  30350
Tel: 770 640-0034  Fax: 770 640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA  01752
Tel: 508 480-9990 Fax: 508 480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL  60143
Tel: 708 285-0071  Fax: 708 285-0075
Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX  75240-8809
Tel: 214 991-7177  Fax: 214 991-8588
Dayton
Microchip Technology Inc.
35 Rockridge Road
Englewood, OH  45322
Tel: 513 832-2543  Fax: 513 832-2841
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA  92715
Tel: 714 263-1888  Fax: 714 263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY  11788
Tel: 516 273-5305  Fax: 516 273-5335

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty
is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property
rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip.
No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights
reserved. All other trademarks mentioned herein are the property of their respective companies.

All rights reserved.  1995, Microchip Technology Incorporated, USA. 


	Preface
	I/O Timing
	Execution Speed
	Cost
	Debugging Tool

	Introduction
	Highlights
	Installing MPSIM
	Document Conventions
	Terminology
	Device-Specific Support
	Customer Support

	The MPSIM Environment
	Introduction
	Highlights
	User Interface
	Invoking MPSIM
	I/O Pins
	I/O Pin Modeling
	Pin Signals

	CPU Model
	Reset Conditions
	Sleep
	WDT
	Registers

	Hardware Stack
	Push
	Pop

	Files Used and Generated By MPSIM
	Command Files
	Initialization File
	Journal File
	Stimulus File
	Files Generated by the Assembler


	Tutorial
	Introduction
	Highlights
	Assemble the Code
	Invoke the Simulator
	Load the Initialization File
	Creating an initialization file

	Load the Hex File
	Load the Stimulus File
	Set Up Trace Parameters
	Set Up Breakpoints
	Execute the Hex Code
	Modify the Hex Code
	Exit the MPSIM Session

	Functional Categories of MPSIM Commands
	Introduction
	Highlights
	Loading and Saving
	Inspecting And Modifying
	Program Memory
	Registers
	Display Functions
	Patch Table
	Clearing Memory and Registers
	Searching Memory
	Symbol Table
	Restore

	Execute and Trace
	Execution Instructions
	Tracing Execution
	Breakpoints

	View Screen
	Miscellaneous Commands
	MPSIM Commands

	MPSIM Commands
	Introduction
	Alphabetic Summary of MPSIM Commands
	AB – Abort Session
	AD – Add Item to View Screen
	B – Set Breakpoint
	BC – Clear Breakpoint
	C – Continue Executing
	CK – Clock
	DB – Display All Active Breakpoints
	DE – Delete Program Memory
	DI – Display Program Memory in Symbolic Format
	DK – Define Key
	DL – Delete Symbol from Symbol Table
	DM – Display Program Memory in Radix Designated Format
	DP – Display All Patches
	DR – Display All Registers
	DS – Display Symbol Table
	DV – Delete View Screen Item
	DW – Enable / Disable Watchdog Timer
	DX – Display Current Trace Parameters
	E – Execute Program
	EE – Modify EE Memory
	EL – Error Level
	F – File Register Display/Modify
	FI – File Input
	FM – Fill Memory
	FW – Fuse Word
	GE – Get Commands from an External File
	GO – Reset and Execute
	GS – Generate Symbol
	H – Help
	IA – Insert/Inspect Assembly Code
	IN – Insert Instruction
	IP – Injection Point
	IR – Initialize with Random Values
	LJ – Load and Execute Journal File
	LO – Load Object File
	LR – Load Registers
	LS – Load Symbol File
	M – Display / Modify Program Memory at Address
	NV – No View Screen
	O – Output Modified Object Code
	P – Select Microcontroller
	Q – Quit
	RA – Restore All
	RE – Reset Elapsed Time and Step Count
	RP – Restore Patches
	RS – Reset Chip
	SC – Display / Modify Processor Cycle Time
	SE – Display / Modify I/O Pin
	SF – Search Program Memory for Register
	SI – Search Program Memory in Symbolic Format
	SM – Search Program Memory in Radix Designated Format
	SR – Set Radix
	SS – Execute A Single Step
	ST – Read Stimulus File
	TA – Trace Address
	TC – Trace Instructions
	TF – Trace to File/Printer
	TR – Trace Register
	TY – Change View Screen
	UR – Upload Registers
	V – View Screen
	Verbose – Echo to Screen
	W – Work Register Display / Modify
	WP – Watchdog Timer Period
	ZM – Zero the Program Memory
	ZP – Zero the Patch Table
	ZR – Zero the Registers
	ZT – Zero the Elapsed Time Counter

	Appendix A. Troubleshooting Guide
	Introduction
	Solutions to Some Common Problems
	Messages
	Informative Messages
	Warning Messages
	Error Messages


	Appendix B. Sample File Listings
	MPSIM.INI
	PIC16C5X.INC
	PIC16CXX.INC
	PIC17CXX.INC
	SAMPLE.ASM
	SAMPLE.INI
	SAMPLE.STI

	Appendix C. Customer Support
	Keeping Current with Microchip Systems
	Highlights
	Systems Information and Upgrade Hot Line
	Connecting to Microchip BBS
	Using the Bulletin Board
	Special Interest Groups
	Files
	Mail

	Software Releases
	Alpha Release
	Intermediate Release
	Beta Release
	Production Release


	Appendix D. Intel INTELLEC Ô Hexadecimal Format
	INHX8M
	8-Bit Hex Format:
	32-Bit Hex Format (.HEX)


	Appendix E. PIC16C5X User’s Guide Addendum
	Introduction
	I/O Pins
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported


	Appendix F. PIC16C64 User’s Guide Addendum
	Introduction
	I/O Pins
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported
	Tcycle Limitation
	TIMER0
	TIMER1
	TIMER2
	CCP1


	Appendix G. PIC16C65 User’s Guide Addendum
	Introduction
	I/O Pins
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported
	Tcycle Limitation
	TIMER0
	TIMER1
	TIMER2
	CCP1 and CCP2
	SSP
	USART


	Appendix H. PIC16C71 User’s Guide Addendum
	Introduction
	I/O Pins
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported
	Tcycle Limitation
	TIMER0
	A/D Converter


	Appendix I. PIC16C73 User’s Guide Addendum
	Introduction
	I/O Pins
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported
	Tcycle Limitation
	TIMER0
	TIMER1
	TIMER2
	CCP1 and CCP2
	SSP
	USART
	A/D Converter


	Appendix J. PIC16C74 User’s Guide Addendum
	Introduction
	I/O Pins
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported
	Tcycle Limitation
	TIMER0
	TIMER1
	TIMER2
	CCP1 and CCP2
	SSP
	USART
	A/D Converter


	Appendix K. PIC16C84 User’s Guide Addendum
	Introduction
	I/O Pins
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack

	Special Registers
	Peripherals
	Peripherals Supported
	Tcycle Limitation
	TIMER0
	EEPROM Data Memory


	Appendix L. PIC17C42 Support
	Introduction
	I/O Pins
	Special Function Registers
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack
	Instruction Set

	Special Registers
	Peripherals
	Tcycle Limitation
	TIMER0
	TIMER1 and TIMER2
	TIMER3 and Capture
	USART

	Memory Modes

	Appendix M. PIC17C43 Support
	Introduction
	I/O Pins
	Special Function Registers
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack
	Instruction Set

	Special Registers
	Peripherals
	Tcycle Limitation
	TIMER0
	TIMER1 and TIMER2
	TIMER3 and Capture
	USART

	Memory Modes

	Appendix N. PIC17C44 Support
	Introduction
	I/O Pins
	Special Function Registers
	Interrupts
	CPU Model
	Reset Conditions
	Sleep
	WDT
	Stack
	Instruction Set

	Special Registers
	Peripherals
	Tcycle Limitation
	TIMER0
	TIMER1 and TIMER2
	TIMER3 and Capture
	USART

	Memory Modes

	WORLDWIDE SALES & SERVICE

